scholarly journals Cloning and expression analysis of GATA1 gene in Carassius auratus red var

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Yusu Tian ◽  
Yuandong Sun ◽  
Mi Ou ◽  
Xiaojuan Cui ◽  
Dinggang Zhou ◽  
...  

AbstractBackgroundGATA1 is a key transcription factor in the GATA family, and promotes the differentiation and maturation of red blood cell, which is essential for normal hematopoiesis.ResultsOur results showed that the cDNA sequence ofGATA1 was 2730 bp long encoding 443 amino acids. qRT-PCR analysis demonstrated thatGATA1 had the highest expression in testis (T), followed by pituitary (P) and spleen (S).GATA1 gene expression inC. auratusred var. embryo from the neuroblast stage (N) to the embryo hatching (H) changes continuously; and the gene expression levels of nonylphenol (NP)-treated and those of control embryos were significantly different. Moreover, Methylation levels ofGATA1gene in NP-treated embryos were higher than those in control embryos, indicating that NP affectedGATA1methylation.ConclusionsOur study provides cues for further studying the roles ofGATA1 gene in fish development, and suggested a potential molecular mechanism by which NP leads to abnormal development of fish embryos.

2020 ◽  
Author(s):  
Yusu Tian ◽  
Yuandong Sun ◽  
Mi Ou ◽  
Xiaojuan Cui ◽  
Dinggang Zhou ◽  
...  

Abstract Background: GATA1 is a key transcription factor in the GATA family, and promotes the differentiation and maturation of red blood cell, which is essential for normal hematopoiesis.Results: Our results showed that the cDNA sequence of GATA1 was 2730 bp long encoding 443 amino acids. qRT-PCR analysis demonstrated that GATA1 had the highest expression in testis(T), followed by pituitary(P) and spleen(S). GATA1 gene expression in C. auratus red var. embryo from the neuroblast stage (N) to the embryo hatching(H) changes continuously; and the gene expression levels of nonylphenol (NP)-treated and those of control embryos were significantly different. Moreover, Methylation levels of GATA1 gene in NP-treated embryos were higher than those in control embryos, indicating that NP affected GATA1 methylation.Conclusions: Our study provides cues for further studying the roles of GATA1 gene in fish development, and suggested a potential molecular mechanism by which NP leads to abnormal development of fish embryos.


2020 ◽  
Author(s):  
Yusu Tian ◽  
Yuandong Sun ◽  
Mi Ou ◽  
Xiaojuan Cui ◽  
Dingguang Zhou ◽  
...  

Abstract Background GATA1 is a key transcription factor in the GATA family, and promotes the differentiation and maturation of red blood cell, which is essential for normal hematopoiesis. Results Our results showed that the cDNA sequence of GATA1 was 2730 bp long encoding 443 amino acids. qRT-PCR analysis demonstrated that GATA1 had the highest expression in testis(T), followed by pituitary(P) and spleen(S). The expression of GATA1 gene in C auratus red var. embryo from the neuroblast stage (N) to the embryo hatching(H); and the gene expression levels of NP-treated and control embryos were significantly different. Methylation results in NP-treated and control embryos indicated that NP affected the methylation level of GATA1. NP increases the methylation level of GATA1 gene in embryos. Conclusions Our study provides important information for further studying the function of GATA1 gene in fish development and the molecular mechanism of NP leading to abnormal development of fish embryos.


2018 ◽  
Vol 20 (1) ◽  
pp. 34 ◽  
Author(s):  
Jing-Jing Wang ◽  
Shuo Han ◽  
Weilun Yin ◽  
Xinli Xia ◽  
Chao Liu

Quantitative reverse transcription polymerase chain reaction (qRT-PCR) is the most sensitive technique for evaluating gene expression levels. Choosing appropriate reference genes for normalizing target gene expression is important for verifying expression changes. Metasequoia is a high-quality and economically important wood species. However, few systematic studies have examined reference genes in Metasequoia. Here, the expression stability of 14 candidate reference genes in different tissues and following different hormone treatments were analyzed using six algorithms. Candidate reference genes were used to normalize the expression pattern of FLOWERING LOCUS T and pyrabactin resistance-like 8. Analysis using the GrayNorm algorithm showed that ACT2 (Actin 2), HIS (histone superfamily protein H3) and TATA (TATA binding protein) were stably expressed in different tissues. ACT2, EF1α (elongation factor-1 alpha) and HIS were optimal for leaves treated with the flowering induction hormone solution, while Cpn60β (60-kDa chaperonin β-subunit), GAPDH (glyceraldehyde-3-phosphate dehydrogenase) and HIS were the best reference genes for treated buds. EF1α, HIS and TATA were useful reference genes for accurate normalization in abscisic acid-response signaling. Our results emphasize the importance of validating reference genes for qRT-PCR analysis in Metasequoia. To avoid errors, suitable reference genes should be used for different tissues and hormone treatments to increase normalization accuracy. Our study provides a foundation for reference gene normalization when analyzing gene expression in Metasequoia.


2020 ◽  
Vol 20 (3) ◽  
Author(s):  
Guanwang Shen ◽  
Hongling Liu ◽  
Ying Lin ◽  
Dongxu Xing ◽  
Yujing Zhang ◽  
...  

Abstract Bombyx mori vitellogenin (BmVg) is highly upregulated during pupation, and the 20-hydroxyecdysone and amino acids may regulate stage-specific BmVg expression. However, previous studies showed that other factors may also affect stage-specific BmVg expression. Here, we characterized effective BmVg transcription factors by identifying the corresponding cis-regulatory elements (CREs). We prepared transgenic B. mori, in which DsRed was driven by various lengths of BmVg promoter. qRT-PCR analysis showed that DsRed expression driven by a 1.0-kb BmVg promoter (VgP1.0K) was consistent with endogenous BmVg. VgP1.0K specificity was closer to the endogenous BmVg promoter than that of VgP0.8K. These results suggest that CREs affecting stage-specific BmVg expression were localized to the 1.0-kb BmVg promoter. We investigated the effects of certain CREs that could influence the stage specificity of BmVg promoter on BmVg expression in transgenic B. mori. The relative DsRed expression was significantly reduced in transgenic female B. mori and the peak in DsRed expression was delayed after E-box CRE mutation. These results demonstrate that the E-box element enhanced BmVg expression and also affected stage-specific BmVg expression. Moreover, the relative DsRed expression was significantly increased in transgenic female of B. mori after 3×BD CRE mutation in BmVg promoter. However, the stage specificity of the mutated promoter was consistent with that of the endogenous BmVg promoter. The 3×BD element downregulated BmVg but had no effect on stage-specific BmVg expression. The present study promoted the process of elucidating the regulatory network for stage-specific BmVg expression and furnished a theoretical basis for the application of BmVg promoter.


2019 ◽  
Vol 30 (01) ◽  
pp. 059-063 ◽  
Author(s):  
Anne Marie O'Donnell ◽  
Hiroki Nakamura ◽  
Prem Puri

Abstract Introduction “Tuft” cells, also known as brush or caveolated cells, are characteristically fusiform shaped, with a distinct apical “tuft” of microvilli extending into the lumen. Double cortin-like kinase 1 (DCLK1) is a microtubule kinase and is a specific marker of intestinal tuft cells. DCLK1-positive tuft cells have been shown to play a key role in gastrointestinal chemosensation, inflammation, and neurotransmission. DCLK1 and Choline acetyltransferase (ChAT), the enzymes responsible for acetylcholine production, are reported to be coexpressed within the gastrointestinal tract. We designed this study to investigate the hypothesis that DCLK1 gene expression is altered in Hirschsprung's disease (HSCR). Materials and Methods HSCR tissue specimens (n = 6) were collected at the time of pull-through surgery, while control samples were obtained at the time of colostomy closure in patients with imperforate anus (n = 6). Quantitative real-time polymerase chain reaction (qRT-PCR) analysis was undertaken to quantify DCLK1 gene expression, and immunolabeling of DCLK1-positive tuft cells was visualized using confocal microscopy. Results qRT-PCR analysis revealed significant downregulation of the DCLK1 gene in both aganglionic and ganglionic HSCR specimens compared with controls (p < 0.05). Confocal microscopy revealed DCLK1-positive tuft cell expression within the colonic mucosa, with a reduction in expression in both aganglionic and ganglionic HSCR colon compared with controls. Conclusion DCLK1 is significantly downregulated in HSCR colon, suggesting a role for tuft cells in cholinergic neurotransmission of the distal colon. The marked decrease in DCLK1 expression within ganglionic specimens highlights the physiologically abnormal nature of this segment in HSCR patients.


2020 ◽  
Vol 21 (6) ◽  
pp. 1924 ◽  
Author(s):  
Limiao Jiang ◽  
Rengasamy Ramamoorthy ◽  
Srinivasan Ramachandran ◽  
Prakash P. Kumar

Dwarfism and semi-dwarfism are among the most valuable agronomic traits in crop breeding, which were adopted by the “Green Revolution”. Previously, we reported a novel semi-dwarf rice mutant (oscyp96b4) derived from the insertion of a single copy of Dissociator (Ds) transposon into the gene OsCYP96B4. However, the systems metabolic effect of the mutation is not well understood, which is important for understanding the gene function and developing new semi-dwarf mutants. Here, the metabolic phenotypes in the semi-dwarf mutant (M) and ectopic expression (ECE) rice line were compared to the wild-type (WT) rice, by using nuclear magnetic resonance (NMR) metabolomics and quantitative real-time polymerase chain reaction (qRT-PCR). Compared with WT, ECE of the OsCYP96B4 gene resulted in significant increase of γ-aminobutyrate (GABA), glutamine, and alanine, but significant decrease of glutamate, aromatic and branched-chain amino acids, and some other amino acids. The ECE caused significant increase of monosaccharides (glucose, fructose), but significant decrease of disaccharide (sucrose); induced significant changes of metabolites involved in choline metabolism (phosphocholine, ethanolamine) and nucleotide metabolism (adenosine, adenosine monophosphate, uridine). These metabolic profile alterations were accompanied with changes in the gene expression levels of some related enzymes, involved in GABA shunt, glutamate and glutamine metabolism, choline metabolism, sucrose metabolism, glycolysis/gluconeogenesis pathway, tricarboxylic acid (TCA) cycle, nucleotide metabolism, and shikimate-mediated secondary metabolism. The semi-dwarf mutant showed corresponding but less pronounced changes, especially in the gene expression levels. It indicates that OsCYP96B4 gene mutation in rice causes significant alteration in amino acid metabolism, carbohydrate metabolism, nucleotide metabolism, and shikimate-mediated secondary metabolism. The present study will provide essential information for the OsCYP96B4 gene function analysis and may serve as valuable reference data for the development of new semi-dwarf mutants.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Chung-Min Kang ◽  
Seong-Oh Kim ◽  
Mijeong Jeon ◽  
Hyung-Jun Choi ◽  
Han-Sung Jung ◽  
...  

The aim of this study was to compare the differential gene expression and stemness in the human gingiva and dental follicles (DFs) according to their biological characteristics. Gingiva (n=9) and DFs (n=9) were collected from 18 children. Comparative gene expression profiles were collected using cDNA microarray. The expression of development, chemotaxis, mesenchymal stem cells (MSCs), and induced pluripotent stem cells (iPSs) related genes was assessed by quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Histological analysis was performed using hematoxylin-eosin and immunohistochemical staining. Gingiva had greater expression of genes related to keratinization, ectodermal development, and chemotaxis whereas DFs exhibited higher expression levels of genes related to tooth and embryo development. qRT-PCR analysis showed that the expression levels of iPSc factors includingSOX2,KLF4, andC-MYCwere58.5±26.3,12.4±3.5, and12.2±1.9times higher in gingiva andVCAM1(CD146) andALCAM(CD166) were33.5±6.9and4.3±0.8times higher in DFs. Genes related to MSCs markers includingCD13,CD34,CD73,CD90, andCD105were expressed at higher levels in DFs. The results of qRT-PCR and IHC staining supported the microarray analysis results. Interestingly, this study demonstrated transcription factors of iPS cells were expressed at higher levels in the gingiva. Given the minimal surgical discomfort and simple accessibility, gingiva is a good candidate stem cell source in regenerative dentistry.


Sign in / Sign up

Export Citation Format

Share Document