accurate normalization
Recently Published Documents


TOTAL DOCUMENTS

36
(FIVE YEARS 11)

H-INDEX

10
(FIVE YEARS 2)

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yinjie Wang ◽  
Yongxia Zhang ◽  
Qingquan Liu ◽  
Haiying Tong ◽  
Ting Zhang ◽  
...  

AbstractIris germanica L. is a perennial herbaceous plant that has been widely cultivated worldwide and is popular for its elegant and vibrantly colorful flowers. Selection of appropriate reference genes is the prerequisite for accurate normalization of target gene expression by quantitative real-time PCR. However, to date, the most suitable reference genes for flowering stages have not been elucidated in I. germanica. In this study, eight candidate reference genes were examined for the normalization of RT-qPCR in three I. germanica cultivars, and their stability were evaluated by four different algorithms (GeNorm, NormFinder, BestKeeper, and Ref-finder). The results revealed that IgUBC and IgGAPDH were the most stable reference genes in ‘00246’ and ‘Elizabeth’, and IgTUB and IgUBC showed stable expression in ‘2010200’. IgUBC and IgGAPDH were the most stable in all samples, while IgUBQ showed the least stability. Finally, to validate the reliability of the selected reference genes, the expression patterns of IgFT (Flowering Locus T gene) was analyzed and emphasized the importance of appropriate reference gene selection. This work presented the first systematic study of reference genes selection during flower bud development and provided guidance to research of the molecular mechanisms of flowering stages in I. germanica.


PLoS ONE ◽  
2020 ◽  
Vol 15 (10) ◽  
pp. e0239287
Author(s):  
Julita Gumna ◽  
Tomasz Zok ◽  
Kacper Figurski ◽  
Katarzyna Pachulska-Wieczorek ◽  
Marta Szachniuk

2020 ◽  
Vol 48 (14) ◽  
pp. e84-e84 ◽  
Author(s):  
Magdalena P Crossley ◽  
Michael J Bocek ◽  
Stephan Hamperl ◽  
Tomek Swigut ◽  
Karlene A Cimprich

Abstract R-loops are dynamic, co-transcriptional nucleic acid structures that facilitate physiological processes but can also cause DNA damage in certain contexts. Perturbations of transcription or R-loop resolution are expected to change their genomic distribution. Next-generation sequencing approaches to map RNA–DNA hybrids, a component of R-loops, have so far not allowed quantitative comparisons between such conditions. Here, we describe quantitative differential DNA–RNA immunoprecipitation (qDRIP), a method combining synthetic RNA–DNA-hybrid internal standards with high-resolution, strand-specific sequencing. We show that qDRIP avoids biases inherent to read-count normalization by accurately profiling signal in regions unaffected by transcription inhibition in human cells, and by facilitating accurate differential peak calling between conditions. We also use these quantitative comparisons to make the first estimates of the absolute count of RNA–DNA hybrids per cell and their half-lives genome-wide. Finally, we identify a subset of RNA–DNA hybrids with high GC skew which are partially resistant to RNase H. Overall, qDRIP allows for accurate normalization in conditions where R-loops are perturbed and for quantitative measurements that provide previously unattainable biological insights.


2020 ◽  
Author(s):  
Shoukai Lin ◽  
Shichang Xu ◽  
Liyan Huang ◽  
Fuxiang Qiu ◽  
Yihong Zheng ◽  
...  

Abstract Background: Loquat ( Eriobotrya japonica Lindl.) is a subtropical evergreen fruit tree that produces fruits with abundant nutrients and medicinal components. Confirming suitable reference genes for a set of loquat samples before qRT-PCR experiments is essential for the accurate quantification of gene expression.Results: In this study, eight candidate reference genes were selected from our previously published RNA-seq data, and primers for each candidate reference gene were designed and evaluated. The Cq values of the candidate reference genes were calculated by RT-qPCR in 31 different loquat samples, including 12 subgroups of developing or abiotic-stressed tissues. Different combinations of stable reference genes were screened according to a comprehensive rank, which was synthesized from the results of four algorithms, including the geNorm, NormFinder, BestKeeper and ΔCt methods. The screened reference genes were verified by normalizing EjLGA1 in each subgroup. The obtained suitable combinations of reference genes for accurate normalization were GAPDH , EF1α and ACT for floral development; GAPDH , UBCE and ACT for fruit setting; EF1α , GAPDH and eIF2B for fruit ripening; ACT , EF1α and UBCE for leaves under heat stress; eIF2B , UBCE and EF1α for leaves under freezing stress; EF1α , TUA and UBCE for leaves under salt stress; ACT , EF1α and eIF2B for immature pulp under freezing stress; ACT , UBCE and eIF2B for immature seeds under freezing stress; EF1α , eIF2B and UBCE for both immature pulp and seeds under freezing stress; UBCE , TUB and TUA for red-fleshed fruits under cold-storage stress; eIF2B , RPS3 and TUB for white-fleshed fruits under cold-storage stress; and eIF2B, UBCE and RPS3 for both red- and white-fleshed fruits under cold-storage stress.Conclusions: This study obtained different combinations of stable reference genes for accurate normalization in twelve subgroups of developing or abiotic-stressed tissues in loquat. The use of the three most stable reference genes could increase the reliability of future quantification experiments.


Genes ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 130 ◽  
Author(s):  
Zhenzhen Bao ◽  
Kaidi Zhang ◽  
Hanfeng Lin ◽  
Changjian Li ◽  
Xiurong Zhao ◽  
...  

Corydalis yanhusuo is a medicinal plant frequently used in traditional Chinese medicine, which has effective medical effects in many aspects. Real-time polymerase chain reaction (RT-PCR) has been one of the most widely used methods in biosynthesis research due to its high sensitivity and quantitative properties in gene expression analysis. To obtain accurate normalization, reference genes are often selected in advance; however, no reference genes are available in C. yanhusuo. Herein, 12 reference gene candidates, named cyclophilin 2 (CYP2), elongation factor 1-α (EF1-α), protein phosphatase 2 (PP2A), SAND protein family (SAND), polypyrimidine tract-binding protein (PTBP), TIP41-like protein (TIP41), lyceraldehyde-3-phosphate hydrogenase (GAPDH), ubiquitin-conjugating enzyme 9 (UBC9), cyclophilin 1 (CYP1), tubulin beta (TUBA), thioredoxin (YLS8), and polyubiquitin 10 (UBQ10), were selected for stability analysis. After being treated with hormone, UV, salt, metal, oxidative, drought, cold (4 °C), and hot stresses (40 °C), the qRT-PCR data of the selected genes was analyzed with NormFinder, geNorm, and BestKeeper. The result indicated that GAPDH, SNAD, and PP2A were the top three most stable reference genes under most treatments. This study selected and validated reliable reference genes in C. yanhusuo under various environmental conditions, which can provide great help for future research on gene expression normalization in C. yanhusuo.


2019 ◽  
Author(s):  
Madzia P Crossley ◽  
Michael J Bocek ◽  
Stephan Hamperl ◽  
Tomek Swigut ◽  
Karlene A. Cimprich

AbstractR-loops are dynamic, co-transcriptional nucleic acid structures that facilitate physiological processes and cause DNA damage in certain contexts. Perturbations of transcription or R-loop resolution are expected to change their genomic distribution. Next-generation sequencing approaches to map RNA:DNA hybrids, a component of R-loops, have so far not allowed quantitative comparisons between such conditions. Here we describe quantitative differential RNA:DNA immunoprecipitation (qDRIP), a method combining synthetic RNA:DNA-hybrid internal standards with high-resolution, strand-specific sequencing. We show that qDRIP avoids biases inherent to read-count normalization by accurately profiling signal in regions unaffected by transcription inhibition in human cells, and by facilitating accurate differential peak calling between conditions. Finally, we use these quantitative comparisons to make the first estimates of the absolute count of RNA:DNA hybrids per cell and their half-lives genome-wide. Overall, qDRIP allows for accurate normalization in conditions where R-loops are perturbed and for quantitative measurements that provide previously unattainable biological insights.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Benshui Shu ◽  
Jingjing Zhang ◽  
Jie Zeng ◽  
Gaofeng Cui ◽  
Guohua Zhong

Abstract As a tightly controlled cell death process, apoptosis eliminates unwanted cells and plays a vital role in multicellular organisms. Previous study have demonstrated that apoptosis occurred in Spodoptera frugiperda cultured Sf9 cells, which triggered by diverse apoptotic stimuli, including azadirachtin, camptothecin and ultraviolet. Due to its simplicity, high sensitivity and reliable specificity, RT-qPCR has been used widespread for analyzing expression levels of target genes. However, the selection of reference genes influences the accuracy of results profoundly. In this study, eight genes were selected for analyses of their suitability as references for normalizing RT-PCR data in Sf9 cells treated with apoptotic agents. Five algorithms, including NormFinder, BestKeeper, Delta Ct method, geNorm, and RefFinder, were used for stability ranking. Based on comprehensively analysis, the expression stability of selected genes varied in cells with different apoptotic stimuli. The best choices for cells under different apoptosis conditions were listed: EF2 and EF1α for cells treated with azadirachtin; RPL13 and RPL3 for cells treated with camptothecin; EF1α and β-1-TUB for cells irradiated under ultraviolet; and EF1α and EF2 for combinational analyses of samples. Our results not only facilitate a more accurate normalization for RT-qPCR data, but also provide the reliable assurance for further studies of apoptotic mechanisms under different stimulus in Sf9 cells.


Genes ◽  
2019 ◽  
Vol 10 (9) ◽  
pp. 647 ◽  
Author(s):  
Yi Luo ◽  
Gangzheng Wang ◽  
Chen Wang ◽  
Yuhua Gong ◽  
Yinbing Bian ◽  
...  

Lentinula edodes is the most consumed mushroom in Asia due to its nutritional and medicinal values, and the optimal reference gene is crucial for normalization of its gene expression analysis. Here, the expression stability of 18 candidate reference genes (CRGs) in L. edodes was analyzed by three statistical algorithms (geNorm, NormFinder and BestKeeper) under different stresses (heat, cadmium excess and Trichoderma atroviride infection), different substrates (straw, sawdust and corn stalk) and different development stages (mycelia, primordia and fruit bodies). Among the 18 CRGs, 28S, Actin and α-tub exhibited the highest expression stability in L. edodes under all conditions, while GPD, SPRYP and MSF showed the least stable expression. The best reference gene in different conditions was different. The pairwise variation values showed that two genes would be sufficient for accurate normalization under different conditions of L. edodes. This study will contribute to more accurate estimation of the gene relative expression levels under different conditions using the optimal reference gene in qRT-PCR (quantitative reverse transcription polymerase chain reaction) analysis.


Sign in / Sign up

Export Citation Format

Share Document