scholarly journals Comparative expression analysis identifies the respiratory transition-related miRNAs and their target genes in tissues of metamorphosing Chinese giant salamander (Andrias davidianus)

BMC Genomics ◽  
2018 ◽  
Vol 19 (1) ◽  
Author(s):  
Shengyan Su ◽  
Yuheng Wang ◽  
Huiwei Wang ◽  
Wei Huang ◽  
Jun Chen ◽  
...  
2020 ◽  
Vol 51 (11) ◽  
pp. 4575-4582
Author(s):  
Yan Meng ◽  
Yuding Fan ◽  
Yong Zhou ◽  
Nan Jiang ◽  
Mingyang Xue ◽  
...  

2019 ◽  
Vol 20 (24) ◽  
pp. 6149 ◽  
Author(s):  
Yiqun Li ◽  
Nan Jiang ◽  
Yuding Fan ◽  
Yong Zhou ◽  
Wenzhi Liu ◽  
...  

Chinese giant salamander iridovirus (GSIV) is the causative pathogen of Chinese giant salamander (Andrias davidianus) iridovirosis, leading to severe infectious disease and huge economic losses. However, the infection mechanism by GSIV is far from clear. In this study, a Chinese giant salamander muscle (GSM) cell line is used to investigate the mechanism of cell death during GSIV infection. Microscopy observation and DNA ladder analysis revealed that DNA fragmentation happens during GSIV infection. Flow cytometry analysis showed that apoptotic cells in GSIV-infected cells were significantly higher than that in control cells. Caspase 8, 9, and 3 were activated in GSIV-infected cells compared with the uninfected cells. Consistently, mitochondria membrane potential (MMP) was significantly reduced, and cytochrome c was released into cytosol during GSIV infection. p53 expression increased at an early stage of GSIV infection and then slightly decreased late in infection. Furthermore, mRNA expression levels of pro-apoptotic genes participating in the extrinsic and intrinsic pathway were significantly up-regulated during GSIV infection, while those of anti-apoptotic genes were restrained in early infection and then rose in late infection. These results collectively indicate that GSIV induces GSM apoptotic cell death involving mitochondrial damage, caspases activation, p53 expression, and pro-apoptotic molecules up-regulation.


2020 ◽  
Vol 51 (6) ◽  
pp. 2613-2623
Author(s):  
Zhanfu Li ◽  
Xiaochuan Chen ◽  
Yongjun Chen ◽  
Weilong Li ◽  
Qifeng Feng ◽  
...  

Insects ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 41
Author(s):  
Ya-Wen Chang ◽  
Yu-Cheng Wang ◽  
Xiao-Xiang Zhang ◽  
Junaid Iqbal ◽  
Yu-Zhou Du

The leafminer fly, Liriomyza trifolii, is an invasive pest of vegetable and horticultural crops in China. In this study, a microinjection method based on dsRNA was developed for RNA interference (RNAi) in L. trifolii using genes encoding vacuolar-ATPase (V-ATPase). Expression analysis indicated that V-ATPase B and V-ATPase D were more highly expressed in L. trifolii adults than in larvae or pupae. Microinjection experiments with dsV-ATPase B and dsV-ATPase D were conducted to evaluate the efficacy of RNAi in L. trifolii adults. Expression analysis indicated that microinjection with 100 ng dsV-ATPase B or dsV-ATPase led to a significant reduction in V-ATPase transcripts as compared to that of the dsGFP control (dsRNA specific to green fluorescent protein). Furthermore, lower dsRNA concentrations were also effective in reducing the expression of target genes when delivered by microinjection. Mortality was significantly higher in dsV-ATPase B- and dsV-ATPase D-treated insects than in controls injected with dsGFP. The successful deployment of RNAi in L. trifolii will facilitate functional analyses of vital genes in this economically-important pest and may ultimately result in new control strategies.


Gene ◽  
2003 ◽  
Vol 311 ◽  
pp. 93-98 ◽  
Author(s):  
Peng Zhang ◽  
Yue-Qin Chen ◽  
Yi-Fei Liu ◽  
Hui Zhou ◽  
Liang-Hu Qu

Sign in / Sign up

Export Citation Format

Share Document