scholarly journals A framework for TRIM21-mediated protein depletion in early mouse embryos: recapitulation of Tead4 null phenotype over three days

BMC Genomics ◽  
2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Steffen Israel ◽  
Ellen Casser ◽  
Hannes C.A. Drexler ◽  
Georg Fuellen ◽  
Michele Boiani

Abstract Background While DNA and RNA methods are routine to disrupt the expression of specific genes, complete understanding of developmental processes requires also protein methods, because: oocytes and early embryos accumulate proteins and these are not directly affected by DNA and RNA methods. When proteins in the oocyte encounter a specific antibody and the TRIpartite Motiv-containing 21 (TRIM21) ubiquitin-protein ligase, they can be committed to degradation in the proteasome, producing a transient functional knock-out that reveals the role of the protein. However, there are doubts about whether this targeted proteolysis could be successfully used to study mammalian development, because duration of the transient effect is unknown, and also because amounts of reagents delivered must be adequate in relation to the amount of target protein, which is unknown, too. Results We show that the mouse egg contains up to 1E-02 picomoles/protein, as estimated by mass spectrometry using the intensity-based absolute quantification (iBAQ) algorithm. However, the egg can only accommodate ≈1E-04 picomoles of antibody or TRIM21 without incurring toxic effects. Within this framework, we demonstrate that TRIM21-mediated protein depletion efficiently disrupts the embryonic process of trophectoderm formation, which critically depends on the TEA domain family member 4 (Tead4) gene. TEAD4 depletion starting at the 1-cell stage lasts for 3 days prior to a return of gene and protein expression to baseline. This time period is long enough to result in a phenotype entirely consistent with that of the published null mutation and RNA interference studies: significant underexpression of trophectodermal genes Cdx2 and Gata3 and strongly impaired ability of embryos to cavitate and implant in the uterus. Omics data are available via ProteomeXchange (PXD012613) and GEO (GSE124844). Conclusions TRIM21-mediated protein depletion can be an effective means to disrupt gene function in mouse development, provided the target gene is chosen carefully and the method is tuned accurately. The knowledge gathered in this study provides the basic know-how (prerequisites, requirements, limitations) to expedite the protein depletion of other genes besides Tead4.

eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Sergio Menchero ◽  
Isabel Rollan ◽  
Antonio Lopez-Izquierdo ◽  
Maria Jose Andreu ◽  
Julio Sainz de Aja ◽  
...  

The Notch signalling pathway plays fundamental roles in diverse developmental processes in metazoans, where it is important in driving cell fate and directing differentiation of various cell types. However, we still have limited knowledge about the role of Notch in early preimplantation stages of mammalian development, or how it interacts with other signalling pathways active at these stages such as Hippo. By using genetic and pharmacological tools in vivo, together with image analysis of single embryos and pluripotent cell culture, we have found that Notch is active from the 4-cell stage. Transcriptomic analysis in single morula identified novel Notch targets, such as early naïve pluripotency markers or transcriptional repressors such as TLE4. Our results reveal a previously undescribed role for Notch in driving transitions during the gradual loss of potency that takes place in the early mouse embryo prior to the first lineage decisions.


2018 ◽  
Author(s):  
Sergio Menchero ◽  
Antonio Lopez-Izquierdo ◽  
Isabel Rollan ◽  
Julio Sainz de Aja ◽  
Maria Jose Andreu ◽  
...  

AbstractThe Notch signalling pathway plays fundamental roles in diverse developmental processes in metazoans, where it is important in driving cell fate and directing differentiation of various cell types. However, we still have limited knowledge about the role of Notch in early preimplantation stages of mammalian development, or how it interacts with other signalling pathways active at these stages such as Hippo. By using genetic and pharmacological tools in vivo, together with image analysis of single embryos and pluripotent cell culture, we have found that Notch is active from the 4-cell stage. Transcriptomic analysis in single morula identified novel Notch targets, such as early naïve pluripotency markers or transcriptional repressors such as TLE4. Our results reveal a previously undescribed role for Notch in driving transitions during the gradual loss of potency that takes place in the early mouse embryo prior to the first lineage decisions.


Development ◽  
1978 ◽  
Vol 48 (1) ◽  
pp. 37-51
Author(s):  
S. J. Kelly ◽  
J. G. Mulnard ◽  
C. F. Graham

Cell division was observed in intact and dissociated mouse embryos between the 2-cell stage and the blastocyst in embryos developing in culture. Division to the 4-cell stage was usually asynchronous. The first cell to divide to the 4-cell stage produced descendants which tended to divide ahead of those cells produced by its slow partner at all subsequent stages of development up to the blastocyte stage. The descendants of the first cell to divide to the 4-cell stage did not subsequently have short cell cycles. The first cell or last cell to divide from the 4-cell stage was labelled with tritiated thymidine. The embryo was reassembled, and it was found that the first pair of cells to reach the 8-cell stage contributed disproportionately more descendants to the ICM when compared with the last cell to divide to the 8-cell stage.


Development ◽  
1993 ◽  
Vol 117 (3) ◽  
pp. 1135-1144 ◽  
Author(s):  
T.P. Fleming ◽  
M. Hay ◽  
Q. Javed ◽  
S. Citi

The molecular maturation of the tight junction in the mouse early embryo has been investigated by monitoring the distribution of cingulin, a 140 × 10(3) M(r) peripheral (cytoplasmic) membrane constituent of the junction, at different stages of development and in different experimental situations. Although tight junction formation does not begin until compaction at the 8-cell stage, cingulin is detectable in oocytes and all stages of cleavage, a factor consistent with our biochemical analysis of cingulin expression (Javed et al., 1992, Development 117, 1145–1151). Using synchronised egg and embryo stages and isolated cell clusters, we have identified three sites where cingulin is localised, the cytocortex, punctate cytoplasmic foci and tight junctions themselves. Cytocortical cingulin is present at the cumulus-oocyte contact site (both cell types), in unfertilised and fertilised eggs and in cleavage stages up to 16-cell morulae, particularly at microvillous domains on the embryo outer surface (eg. apical poles at compaction). Embryo manipulation experiments indicate that cortical cingulin is labile and dependent upon cell interactions and therefore is not merely an inheritance from the egg. Cingulin cytoplasmic foci are evident only in outer cells (prospective trophectoderm) from the 32-cell stage, just prior to cavitation, and decline from approx. 8 hours after cavitation has initiated. The appearance of these foci is insensitive to cycloheximide treatment and they colocalise with apically derived endocytic vesicles visualised by FITC-dextran, indicating that the foci represent the degradation of cytocortical cingulin by endocytic turnover. Cingulin is detectable at the tight junction site between blastomeres usually from the 16-cell stage, although earlier assembly occurs in a minority (up to 20%) of specimens. Cingulin assembly at the tight junction is sensitive to cycloheximide and is identifiable approx. 10 hours after cell adhesion is initiated and ZO-1 protein assembles. Collectively, our results indicate that (i) cingulin from nonjunctional sites does not contribute to tight junction assembly and (ii) the molecular maturation of the junction appears to occur progressively over at least two cell cycles.


eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Jan J Zylicz ◽  
Maud Borensztein ◽  
Frederick CK Wong ◽  
Yun Huang ◽  
Caroline Lee ◽  
...  

Early mouse development is regulated and accompanied by dynamic changes in chromatin modifications, including G9a-mediated histone H3 lysine 9 dimethylation (H3K9me2). Previously, we provided insights into its role in post-implantation development (Zylicz et al., 2015). Here we explore the impact of depleting the maternally inherited G9a in oocytes on development shortly after fertilisation. We show that G9a accumulates typically at 4 to 8 cell stage to promote timely repression of a subset of 4 cell stage-specific genes. Loss of maternal inheritance of G9a disrupts the gene regulatory network resulting in developmental delay and destabilisation of inner cell mass lineages by the late blastocyst stage. Our results indicate a vital role of this maternally inherited epigenetic regulator in creating conducive conditions for developmental progression and on cell fate choices.


2021 ◽  
Author(s):  
Yezhang Zhu ◽  
Jiali Yu ◽  
Yan Rong ◽  
Yun-Wen Wu ◽  
Heng-Yu Fan ◽  
...  

Polycomb group (PcG) proteins are crucial chromatin regulators during development. H2Aub and H3K27me3 are catalyzed by Polycomb-repressive Complex 1 and 2 (PRC1/2) respectively, and largely overlap in the genome due to mutual recruitment of the two complexes. However, whether PRC1/H2Aub and PRC2/H3K27me3 can function independently remains obscure. Here we uncovered a genome-wide decoupling of H2Aub and H3K27me3 in preimplantation mouse embryos, at both canonical PcG targets and broad distal domains. H2Aub represses future bivalent genes without H3K27me3 but does not contribute to maintenance of H3K27me3-dependent non-canonical imprinting. Our study thus revealed their distinct and independent functions in early mammalian development.


eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Katia Ancelin ◽  
Laurène Syx ◽  
Maud Borensztein ◽  
Noémie Ranisavljevic ◽  
Ivaylo Vassilev ◽  
...  

Upon fertilization, the highly specialised sperm and oocyte genomes are remodelled to confer totipotency. The mechanisms of the dramatic reprogramming events that occur have remained unknown, and presumed roles of histone modifying enzymes are just starting to be elucidated. Here, we explore the function of the oocyte-inherited pool of a histone H3K4 and K9 demethylase, LSD1/KDM1A during early mouse development. KDM1A deficiency results in developmental arrest by the two-cell stage, accompanied by dramatic and stepwise alterations in H3K9 and H3K4 methylation patterns. At the transcriptional level, the switch of the maternal-to-zygotic transition fails to be induced properly and LINE-1 retrotransposons are not properly silenced. We propose that KDM1A plays critical roles in establishing the correct epigenetic landscape of the zygote upon fertilization, in preserving genome integrity and in initiating new patterns of genome expression that drive early mouse development.


2008 ◽  
Vol 19 (10) ◽  
pp. 4383-4392 ◽  
Author(s):  
Karin Lykke-Andersen ◽  
Michael J. Gilchrist ◽  
Joanna B. Grabarek ◽  
Partha Das ◽  
Eric Miska ◽  
...  

Activation of zygotic gene expression in the two-cell mouse embryo is associated with destruction of maternally inherited transcripts, an important process for embryogenesis about which little is understood. We asked whether the Argonaute (Ago)/RNA-induced silencing complex, providing the mRNA “slicer” activity in gene silencing, might contribute to this process. Here we show that Ago2, 3, and 4 transcripts are contributed to the embryo maternally. By systematic knockdown of maternal Ago2, 3, and 4, individually and in combination, we find that only Ago2 is required for development beyond the two-cell stage. Knockdown of Ago2 stabilizes one set of maternal mRNAs and reduces zygotic transcripts of another set of genes. Ago2 is localized in mRNA-degradation P-bodies analogous to those that function in RNAi-like mechanisms in other systems. Profiling the expression of microRNAs throughout preimplantation development identified several candidates that could potentially work with Ago2 to mediate degradation of specific mRNAs. However, their low abundance raises the possibility that other endogenous siRNAs may also participate. Together, our results demonstrate that maternal expression of Ago2 is essential for the earliest stages of mouse embryogenesis and are compatible with the notion that degradation of a proportion of maternal messages involves the RNAi-machinery.


Development ◽  
1993 ◽  
Vol 117 (2) ◽  
pp. 711-723 ◽  
Author(s):  
R.M. Albano ◽  
N. Groome ◽  
J.C. Smith

Members of the activin family have been suggested to act as mesoderm-inducing factors during early amphibian development. Little is known, however, about mesoderm formation in the mammalian embryo, and as one approach to investigating this we have studied activin expression during early mouse development. Activins are homo- or heterodimers of the beta A or beta B subunits of inhibin, itself a heterodimer consisting of one of the beta subunits together with an alpha subunit. Our results indicate that the oocyte contains mRNA encoding all three subunits, and antibody staining demonstrates the presence of both alpha and beta protein chains. From the fertilized egg stage onwards, alpha subunit protein cannot be detected, so the presence of beta subunits reflects the presence of activin rather than inhibin. Maternal levels of activin protein decline during early cleavage stages but increase, presumably due to zygotic transcription (see below), in the compacted morula. By 3.5 days, only the inner cell mass (ICM) cells of the blastocyst express activin, but at 4.5 days the situation is reversed; activin expression is confined to the trophectoderm. Using reverse transcription-PCR, neither beta A nor beta B mRNA was detectable at the two-cell stage but transcripts encoding both subunits were detectable at the morula stage, with beta B mRNA persisting into the blastocyst. We have also analyzed activin and inhibin expression in ES and EC cells. Consistent with the observation that activins are expressed in the ICM of 3.5-day blastocysts, we find high levels of beta A and beta B mRNA in all eight ES cell lines tested. F9 EC cells express only activin beta B, together with low levels of the inhibin alpha chain. When ES and EC cells are induced to differentiate, levels of activin fall dramatically. These results are consistent with a role for activins in mesoderm formation and other steps of early mouse development.


1993 ◽  
Vol 105 (1) ◽  
pp. 157-166 ◽  
Author(s):  
C. Gueth-Hallonet ◽  
C. Antony ◽  
J. Aghion ◽  
A. Santa-Maria ◽  
I. Lajoie-Mazenc ◽  
...  

gamma-Tubulin, a recently discovered member of the tubulin superfamily, is a peri-centriolar component considered to be essential for microtubule nucleation. Mouse oocytes and early embryos lack centrioles until the blastocyst stage. Thus, early mouse embryos allowed us to study the location of gamma-tubulin in animal cells in the absence of centrioles. For this, we used an antiserum directed against a specific peptide of the gamma-tubulin sequence, which is conserved among species. This serum has been characterised both in PtK2 and mouse cells. We found that it specifically-stained the spindle poles and the cytoplasmic microtubule organizing centers in metaphase II oocytes and the spindle poles in mitosis during the cleavage stages. In contrast, no interphase staining could be detected during cleavage. Since the overall level of gamma-tubulin did not decrease during interphase, as shown by immunoblotting experiments, this absence of staining during interphase is probably due to a cytoplasmic dispersion of gamma-tubulin. A single dot-like interphase reactivity appeared at the 32-cell stage. In parallel, electron microscopy studies allowed us to detect centrioles for the first time at the 64-cell stage. The possible roles of gamma-tubulin in microtubule nucleation and in centrosome maturation are discussed.


Sign in / Sign up

Export Citation Format

Share Document