scholarly journals A high-density SNP-based genetic map and several economic traits-related loci in Pelteobagrus vachelli

BMC Genomics ◽  
2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Guosong Zhang ◽  
Jie Li ◽  
Jiajia Zhang ◽  
Xia Liang ◽  
Tao Wang ◽  
...  

Abstract Background A high-density genetic linkage map is essential for QTL fine mapping, comparative genome analysis, identification of candidate genes and marker-assisted selection in aquaculture species. Pelteobagrus vachelli is a very popular commercial species in Asia. However, some specific characters hindered achievement of the traditional selective breeding based on phenotypes, such as lack of large-scale genomic resource and short of markers tightly associated with growth, sex determination and hypoxia tolerance related traits. Results By making use of 5059 ddRAD markers in P. vachelli, a high-resolution genetic linkage map was successfully constructed. The map’ length was 4047.01 cM by using an interval of 0.11 cm, which is an average marker standard. Comparative genome mapping revealed that a high proportion (83.2%) of markers with a one-to-one correspondence were observed between P. vachelli and P. fulvidraco. Based on the genetic map, 8 significant genome-wide QTLs for 4 weight, 1 body proportion, 2 sex determination, and 1 hypoxia tolerance related traits were detected on 4 LGs. Some SNPs from these significant genome-wide QTLs were observably associated with these phenotypic traits in other individuals by Kompetitive Allele Specific PCR. In addition, two candidate genes for weight, Sipa1 and HSD11B2, were differentially expressed between fast-, medium- and slow-growing P. vachelli. Sema7a, associated with hypoxia tolerance, was induced after hypoxia exposure and reoxygenation. Conclusions We mapped a set of suggestive and significant QTLs as well as candidate genes for 12 growth, 1 sex determination and 1 hypoxia tolerance related traits based on a high-density genetic linkage map by making use of SNP markers for P. fulvidraco. Our results have offered a valuable method about the much more efficient production of all-male, fast growth and hypoxia tolerance P. vachelli for the aquaculture industry.

2019 ◽  
Author(s):  
Guosong Zhang ◽  
Jie Li ◽  
Jiajia Zhang ◽  
Xia Liang ◽  
Tao Wang ◽  
...  

Abstract Background: As is known to all, when we are doing QTL fine mapping, analyzing comparative genome, identifying candidate genes, making marker-assisted selection in aquaculture species, the high-density genetic linkage map is of great significance. Pelteobagrus vachelli is a very popular commercial species in Asia. However, some specific characters made it difficult to do traditional selective breeding based on phenotypes. For instance, potential problems include lacking in genomic resource which is in large scale and short of markers that is related tightly to growth, sex determination and hypoxia tolerance related traits. Results: By making use of 5059 ddRAD markers in P. vachelli,a high-resolution genetic linkage map was successfully constructed. The map’ length was 4047.01 cM by using an interval of 0.11 cm, which is an average marker standard. It is reflected that bu using comparative genome mapping, a large majority (83.2%) of markers with a one-to-one correspondence were observed between P. vachelli and P. fulvidraco. Based on the genetic map, 8 significant genome-wide QTLs for 4 weight, 1 body proportion, 2 sex determination, and 1 hypoxia tolerance related traits were detected on 4 LGs. Some SNPs from these significant genome-wide QTLs were observably associated with these phenotypic traits in other individuals by Kompetitive Allele Specific PCR. In addition, two candidate gene for weight, Sipa1 and HSD11B2, were differentially expressed between fast-, medium- and slow-growing P. vachelli. Sema7a, associated with hypoxia tolerance, was induced after hypoxia exposure and reoxygenation. Conclusions: We mapped a set of suggestive and significant QTLs as well as candidate genes for 12 growth, 1 sex determination and 1 hypoxia tolerance related traits based on a high-density genetic linkage map by making use of SNP markers for P. fulvidraco. Our results have offered a valuable method about the much more efficient production of all-male, fast growth and hypoxia tolerance P. vachelli for the aquaculture industry.


2019 ◽  
Vol 99 (5) ◽  
pp. 599-610
Author(s):  
Junhuan Zhang ◽  
Haoyuan Sun ◽  
Li Yang ◽  
Fengchao Jiang ◽  
Meiling Zhang ◽  
...  

A high-density genetic map of apricot (Prunus armeniaca L.) was constructed using an F1 population constructed by crossing two main Chinese cultivars ‘Chuanzhihong’ and ‘Luotuohuang’, coupled with a recently developed reduced representation library (RRL) sequencing. The average sequencing depth was 38.97 in ‘Chuanzhihong’ (female parent), 33.05 in ‘Luotuohuang’ (male parent), and 8.91 in each progeny. Based on the sequencing data, 12 451 polymorphic markers were developed and used in the construction of the genetic linkage map. The final map of apricot comprised eight linkage groups, including 1991 markers, and covered 886.25 cM of the total map length. The average distance between adjacent markers was narrowed to 0.46 cM. Gaps larger than 5 cM only accounted for <0.33%. To our knowledge, this map is the densest genetic linkage map that is currently available for apricot research. It is a valuable linkage map for quantitative trait loci (QTLs) identification of important agronomic traits. Moreover, the high marker density and well-ordered markers that this linkage map provides will be useful for molecular breeding of apricot as well. In this study, we applied this map in the QTL analysis of an important agronomic trait, pistil abortion. Several QTLs were detected and mapped respectively to the middle regions of LG5 (51.005∼59.4 cM) and LG6 (72.884∼76.562 cM), with nine SLAF markers closely linked to pistil abortion. The high-density genetic map and QTLs detected in this study will facilitate marker-assisted breeding and apricot genomic study.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12390
Author(s):  
Yaqun Zhang ◽  
Chuantao Zhang ◽  
Na Yao ◽  
Jingxian Huang ◽  
Xiangshan Sun ◽  
...  

Penaeus japonicus is one of the most important farmed shrimp species in many countries. Sexual dimorphism is observed in P. japonicus, in which females grow faster and larger than males; therefore, a unisexual female culture of P. japonicus could improve the efficiency of productivity. However, the genetic mechanisms underlying sex determination in P. japonicus are unclear. In this study, we constructed a high-density genetic linkage map of P. japonicus using genotyping-by-sequencing (GBS) technology in a full-sib family. The final map was 3,481.98 cM in length and contained 29,757 single nucleotide polymorphisms (SNPs). These SNPs were distributed on 41 sex-averaged linkage groups, with an average inter-marker distance of 0.123 cM. One haplotype, harboring five sex-specific SNPs, was detected in linkage group 1 (LG1), and its corresponding confidence interval ranged from 211.840 to 212.592 cM. Therefore, this high-density genetic linkage map will be informative for genome assembly and marker-assisted breeding, and the sex-linked SNPs will be helpful for further studies on molecular mechanisms of sex determination and unisexual culture of P. japonicus in the future.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Qiaomu Hu ◽  
Yang Liu ◽  
Xiaolin Liao ◽  
Haifeng Tian ◽  
Xiangshan Ji ◽  
...  

Abstract Background The Chinese giant salamander Andrias davidianus is an important amphibian species in China because of its increasing economic value, protection status and special evolutionary position from aquatic to terrestrial animal. Its large genome presents challenges to genetic research. Genetic linkage mapping is an important tool for genome assembly and determination of phenotype-related loci. Results In this study, we constructed a high-density genetic linkage map using ddRAD sequencing technology to obtain SNP genotyping data of members from an full-sib family which sex had been determined. A total of 10,896 markers were grouped and oriented into 30 linkage groups, representing 30 chromosomes of A. davidianus. The genetic length of LGs ranged from 17.61 cM (LG30) to 280.81 cM (LG1), with a mean inter-locus distance ranging from 0.11(LG3) to 0.48 cM (LG26). The total genetic map length was 2643.10 cM with an average inter-locus distance of 0.24 cM. Three sex-related loci and four sex-related markers were found on LG6 and LG23, respectively. Conclusion We constructed the first High-density genetic linkage map and identified three sex-related loci in the Chinese giant salamander. Current results are expected to be a useful tool for future genomic studies aiming at the marker-assisted breeding of the species.


2021 ◽  
Vol 15 (8) ◽  
pp. 889-897
Author(s):  
Pin Lyu ◽  
Jianhua Hou ◽  
Haifeng Yu ◽  
Huimin Shi

Background: Sunflower (Helianthus annuus L.) is an important oil crop only after soybean, canola and peanuts. A high-quality genetic map is the foundation of marker-assisted selection (MAS). However, for this species, the high-density maps have been reported limitedly. Objective: In this study, we proposed the construction of a high-density genetic linkage map by the F7 population of sunflowers using SNP and SSR Markers. Methods: The SLAF-seq strategy was employed to further develop SNP markers with SSR markers to construct the high-density genetic map by the HighMap software. Results: A total of 1,138 million paired-end reads (226Gb) were obtained and 518,900 SLAFs were detected. Of the polymorphic SLAFs, 2,472,245 SNPs were developed and finally, 5,700 SNPs were found to be ideal to construct a genetic map after filtering. The final high-density genetic map included 4,912 SNP and 93 SSR markers distributed in 17 linkage groups (LGs) and covered 2,425.05 cM with an average marker interval of 0.49 cM. Conclusion: The final result demonstrated that the SLAF-seq strategy is suitable for SNP markers detection. The genetic map reported in this study can be considered as one of the most highdensity genetic linkage maps of sunflower and could lay a foundation for quantitative trait loci (QTLs) fine mapping or map-based gene cloning.


BMC Genomics ◽  
2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Zongyu Zhang ◽  
Wengang Xie ◽  
Junchao Zhang ◽  
Na Wang ◽  
Yongqiang Zhao ◽  
...  

Abstract Background Elymus sibiricus is an ecologically and economically important perennial, self-pollinated, and allotetraploid (StStHH) grass, widely used for forage production and animal husbandry in Western and Northern China. However, it has low seed yield mainly caused by seed shattering, which makes seed production difficult for this species. The goals of this study were to construct the high-density genetic linkage map, and to identify QTLs and candidate genes for seed-yield related traits. Results An F2 mapping population of 200 individuals was developed from a cross between single genotype from “Y1005” and “ZhN06”. Specific-locus amplified fragment sequencing (SLAF-seq) was applied to construct the first genetic linkage map. The final genetic map included 1971 markers on the 14 linkage groups (LGs) and was 1866.35 cM in total. The length of each linkage group varied from 87.67 cM (LG7) to 183.45 cM (LG1), with an average distance of 1.66 cM between adjacent markers. The marker sequences of E. sibiricus were compared to two grass genomes and showed 1556 (79%) markers mapped to wheat, 1380 (70%) to barley. Phenotypic data of eight seed-related traits (2016–2018) were used for QTL identification. A total of 29 QTLs were detected for eight seed-related traits on 14 linkage groups, of which 16 QTLs could be consistently detected for two or three years. A total of 6 QTLs were associated with seed shattering. Based on annotation with wheat and barley genome and transcriptome data of abscission zone in E. sibiricus, we identified 30 candidate genes for seed shattering, of which 15, 7, 6 and 2 genes were involved in plant hormone signal transcription, transcription factor, hydrolase activity and lignin biosynthetic pathway, respectively. Conclusion This study constructed the first high-density genetic linkage map and identified QTLs and candidate genes for seed-related traits in E. sibiricus. Results of this study will not only serve as genome-wide resources for gene/QTL fine mapping, but also provide a genetic framework for anchoring sequence scaffolds on chromosomes in future genome sequence assembly of E. sibiricus.


2019 ◽  
Vol 39 (6) ◽  
Author(s):  
Weiguo Zhao ◽  
Lina Zhang ◽  
Hongbo Chao ◽  
Hao Wang ◽  
Na Ta ◽  
...  

2019 ◽  
Author(s):  
Bo-Young Lee ◽  
Min-Sub Kim ◽  
Beom-Soon Choi ◽  
Atsushi J. Nagano ◽  
Doris Wai Ting Au ◽  
...  

ABSTRACTMedaka (Oryzias spp.) is an important fish species in ecotoxicology and considered as a model species due to its biological features including small body size and short generation time. Since Japanese medaka Oryzias latipes is a freshwater species with access to an excellent genome resources, the marine medaka Oryzias melastigma is also applicable for marine ecotoxicology. In genome era, a high-density genetic linkage map is a very useful resource in genomic research, providing a means for comparative genomic analysis and verification of de novo genome assembly. In this study, we developed a high-density genetic linkage map for O. melastigma using restriction-site associated DNA sequencing (RAD-seq). The genetic map consisted of 24 linkage groups with 2,481 RAD-tag markers. The total map length was 1,784 cM with an average marker space of 0.72 cM. The genetic map was integrated with the reference-assisted chromosome assembly (RACA) of O. melastigma, which anchored 90.7% of the assembled sequence onto the linkage map. The values of complete Benchmarking Universal Single-Copy Orthologs (BUSCO) were similar to RACA assembly but N50 (23.74 Mb; total genome length 779.4 Mb; gap 5.29%) increased to 29.99 Mb (total genome length 778.7 Mb; gap 5.2%). Using MapQTL analysis with a single nucleotide polymorphism markers, we identified a major quantitative trait locus for sex traits on the Om10. The integration of the genetic map with the reference genome of marine medaka will serve as a good resource for studies in molecular toxicology, genomics, CRISPR/Cas9, and epigenetics.


Sign in / Sign up

Export Citation Format

Share Document