scholarly journals Aging features of the migratory locust at physiological and transcriptional levels

BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Siyuan Guo ◽  
Pengcheng Yang ◽  
Bo Liang ◽  
Feng Zhou ◽  
Li Hou ◽  
...  

Abstract Background Non-Drosophila insects provide diverse aging types and important complementary systems for studies of aging biology. However, little attention has been paid to the special roles of non-Drosophila insects in aging research. Here, the aging-related features of the migratory locust, Locusta migratoria, were determined at the physiological, cellular, and transcriptional levels. Results In physiological assessments, the flight performance and sperm state of locusts displayed clear aging-related decline in male adults. Transcriptional analyses demonstrated locusts have similar aging-related genes with model species. However, different from those of Drosophila and mammals, the organ-specific aging transcriptional features of locusts were characterized by intensive expression changes in flight muscle and fat body and little transcriptional changes in brain. The predominant transcriptional characteristics of flight muscle and fat body aging were changes in expression of mitochondrion-related genes and detoxification and phagocytosis genes, respectively. Cellular assessments revealed the incidence of mitochondrial abnormalities significantly increased in aged flight muscle, and apoptotic signals and nuclear abnormalities were enhanced in aged fat body but not in brain. In addition, some well-known aging genes and locust aging-related genes (i.e., IAP1, PGRP-SA, and LIPT1), whose roles in aging regulation were rarely reported, were demonstrated to affect lifespan, metabolism, and flight ability of locusts after RNAi. Conclusion This study revealed multi-level aging signatures of locust, thus laying a foundation for further investigation of aging mechanisms in this famous insect in the future.

1990 ◽  
Vol 269 (2) ◽  
pp. 309-313 ◽  
Author(s):  
G Gäde ◽  
H Wilps ◽  
R Kellner

A hypertrehalosaemic neuropeptide from the corpora cardiaca of the blowfly Phormia terraenovae has been isolated by reversed-phase h.p.l.c., and its primary structure was determined by pulsed-liquid phase sequencing employing Edman chemistry after enzymically deblocking the N-terminal pyroglutamate residue. The C-terminus was also blocked, as indicated by the lack of digestion when the peptide was incubated with carboxypeptidase A. The octapeptide has the sequence pGlu-Leu-Thr-Phe-Ser-Pro-Asp-Trp-NH2 and is clearly defined as a novel member of the RPCH/AKH (red-pigment-concentrating hormone/adipokinetic hormone) family of peptides. It is the first charged member of this family to be found. The synthetic peptide causes an increase in the haemolymph carbohydrate concentration in a dose-dependent fashion in blowflies and therefore is named ‘Phormia terraenovae hypertrehalosaemic hormone’ (Pht-HrTH). In addition, receptors in the fat-body of the American cockroach (Periplaneta americana) recognize the peptide, resulting in carbohydrate elevation in the blood. However, fat-body receptors of the migratory locust (Locusta migratoria) do not recognize this charged molecule, and thus no lipid mobilization is observed in this species.


1952 ◽  
Vol 43 (1) ◽  
pp. 101-109 ◽  
Author(s):  
S. P. Cheu

The process of build-up of reserve substances in Locusta migratoria migratorioides (R. & F.) is very closely correlated with the feeding activity of the insect. Locusts attain their maximum body weight in the initial period before maturation. In the females there is one minor build-up period after each laying.As measured by the weight of faeces produced, the gregaria female consumes more food than the solitaria during development. It also has a lower rate of increase in body weight, maturation and oviposition.Locusts start to build up fat soon after the final ecdysis. The fat content reaches its maximum in the early part of adult life, and then begins to decline in both sexes of both phases.By far the greater part of the fat reserve thus built up in the gregaria female is used up before oviposition, and only a small amount goes to the making of the first egg-pod. The fat of the subsequent egg-pods (of both phases) is derived from the fat built up each time after a new egg-pod is laid.The solitaria females may mature their eggs at various stages in the development of the fat body. Those which have a longer pre-maturation period have a higher fat content.


1986 ◽  
Vol 6 (3) ◽  
pp. 309-316 ◽  
Author(s):  
Moses Agbanyo ◽  
Norman F. Taylor

Flight muscle and fat body extracts from Locusta migratoria were incubated with D-[U-14C]-glucose or D-[3-3H]-3-deoxy-3-fluoroglucose and the products were analyzed. In the case of the latter compound, radio-chromatographic analysis yielded glycogen and trehalose fractions that were shown by19F nuclear magnetic resonance to contain fluorine. Acid hydrolysis of these fractions liberated tritium labelled 3-deoxy-3-fluoro-D-glucose. In addition to the formation of “fluoroglycogen” and “fluorotrehalose” in these tissue extracts, there was an accumulation of tritium labelled fructose.


1997 ◽  
Vol 153 (2) ◽  
pp. 299-305 ◽  
Author(s):  
P C C M Passier ◽  
H G B Vullings ◽  
J H B Diederen ◽  
D J Van der Horst

Abstract The effect of trehalose at various concentrations on the release of adipokinetic hormones (AKHs) from the adipokinetic cells in the glandular part of the corpus cardiacum of Locusta migratoria was studied in vitro. Pools of five corpora cardiaca or pools of five glandular parts of corpora cardiaca were incubated in a medium containing different concentrations of trehalose in the absence or presence of AKH-release-inducing agents. It was demonstrated that trehalose inhibits spontaneous release of AKH I in a dose-dependent manner. At a concentration of 80 mm, which is the concentration found in the hemolymph at rest, trehalose significantly decreased the release of AKH I induced by 100 μm locustatachykinin I, 10 μm 3-isobutyl-1-methylxanthine (IBMX) or high potassium concentrations. The specificity of the effect of trehalose was studied by incubating pools of corpora cardiaca with the non-hydrolyzable disaccharide sucrose or with glucose, the degradation product of trehalose, both in the presence and absence of 10 μm IBMX. Sucrose had no effect at all on the release of AKH I, whereas glucose strongly inhibited its release. The results point to the inhibitory effect of trehalose on the release of AKH I being exerted, at least partly, at the level of the adipokinetic cells, possibly after its conversion into glucose. The data presented in this study support the hypothesis that in vivo the relatively high concentration of trehalose (80 mm) at rest strongly inhibits the release of AKHs. At the onset of flight, the demand for energy substrates exceeds the amount of trehalose that can be mobilized from the fat body and consequently the trehalose concentration in the hemolymph decreases. This relieves the inhibitory effect of trehalose on the release of AKHs, which in turn mobilize lipids from the fat body. Journal of Endocrinology (1997) 153, 299–305


2020 ◽  
Vol 21 (17) ◽  
pp. 6058 ◽  
Author(s):  
Marijke Gijbels ◽  
Sam Schellens ◽  
Tine Schellekens ◽  
Evert Bruyninckx ◽  
Elisabeth Marchal ◽  
...  

Krüppel-homolog 1 (Kr-h1) is a zinc finger transcription factor maintaining the status quo in immature insect stages and promoting reproduction in adult insects through the transduction of the Juvenile Hormone (JH) signal. Knockdown studies have shown that precocious silencing of Kr-h1 in the immature stages results in the premature development of adult features. However, the molecular characteristics and reproductive potential of these premature adult insect stages are still poorly understood. Here we report on an adult-like or ‘adultoid’ phenotype of the migratory locust, Locusta migratoria, obtained after a premature metamorphosis induced by the silencing of LmKr-h1 in the penultimate instar. The freshly molted adultoid shows precocious development of adult features, corresponding with increased transcript levels of the adult specifier gene LmE93. Furthermore, accelerated ovarian maturation and vitellogenesis were observed in female adultoids, coinciding with elevated expression of LmCYP15A1 in corpora allata (CA) and LmKr-h1 and vitellogenin genes (LmVg) in fat body, whereas LmE93 and Methoprene-tolerant (LmMet) transcript levels decreased in fat body. In adultoid ovaries, expression of the Halloween genes, Spook (LmSpo) and Phantom (LmPhm), was elevated as well. In addition, the processes of mating and oviposition were severely disturbed in these females. L. migratoria is a well-known, swarm-forming pest insect that can destroy crops and harvests in some of the world’s poorest countries. As such, a better understanding of factors that are capable of significantly reducing the reproductive potential of this pest may be of crucial importance for the development of novel locust control strategies.


Development ◽  
2020 ◽  
Vol 147 (18) ◽  
pp. dev188813
Author(s):  
Zhongxia Wu ◽  
Qiongjie He ◽  
Baojuan Zeng ◽  
Haodan Zhou ◽  
Shutang Zhou

ABSTRACTVitellogenin (Vg) is a prerequisite for egg production and embryonic development after ovipositioning in oviparous animals. In many insects, juvenile hormone (JH) promotes fat body cell polyploidization for the massive Vg synthesis required for the maturation of multiple oocytes, but the underlying mechanisms remain poorly understood. Using the migratory locust Locusta migratoria as a model system, we report here that JH induces the dephosphorylation of Forkhead box O transcription factor (FoxO) through a signaling cascade including leucine carboxyl methyltransferase 1 (LCMT1) and protein phosphatase 2A (PP2A). JH promotes PP2A activity via LCMT1-mediated methylation, consequently triggering FoxO dephosphorylation. Dephosphorylated FoxO binds to the upstream region of two endocycle-related genes, cell-division-cycle 2 (Cdc2) and origin-recognition-complex subunit 5 (Orc5), and activates their transcription. Depletion of FoxO, Cdc2 or Orc5 results in blocked polyploidization of fat body cells, accompanied by markedly reduced Vg expression, impaired oocyte maturation and arrested ovarian development. The results suggest that JH acts via LCMT1-PP2A-FoxO to regulate Cdc2 and Orc5 expression, and to enhance ploidy of fat body cells in preparation for the large-scale Vg synthesis required for synchronous maturation of multiple eggs.


Parasitology ◽  
1953 ◽  
Vol 43 (3-4) ◽  
pp. 287-290 ◽  
Author(s):  
Elizabeth U. Canning

On 7 March 1953 I received several specimens of Locusta migratoria from Mr T. Singh, who found them dying in the breeding cages at the Imperial College, London. Microscopic examination showed that the fat body contained large numbers of oval-shaped spores belonging to a microsporidian.


Sign in / Sign up

Export Citation Format

Share Document