scholarly journals Using carrot centromeric repeats to study karyotype relationships in the genus Daucus (Apiaceae)

BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Dariusz Kadluczka ◽  
Ewa Grzebelus

Abstract Background In the course of evolution, chromosomes undergo evolutionary changes; thus, karyotypes may differ considerably among groups of organisms, even within closely related taxa. The genus Daucus seems to be a promising model for exploring the dynamics of karyotype evolution. It comprises some 40 wild species and the cultivated carrot, a crop of great economic significance. However, Daucus species are very diverse morphologically and genetically, and despite extensive research, the taxonomic and phylogenetic relationships between them have still not been fully resolved. Although several molecular cytogenetic studies have been conducted to investigate the chromosomal structure and karyotype evolution of carrot and other Daucus species, detailed karyomorphological research has been limited to carrot and only a few wild species. Therefore, to better understand the karyotype relationships within Daucus, we (1) explored the chromosomal distribution of carrot centromeric repeats (CentDc) in 34 accessions of Daucus and related species by means of fluorescence in situ hybridization (FISH) and (2) performed detailed karyomorphological analysis in 16 of them. Results We determined the genomic organization of CentDc in 26 accessions of Daucus (belonging to both Daucus I and II subclades) and one accession of closely related species. The CentDc repeats were present in the centromeric regions of all chromosomes of 20 accessions (representing 11 taxa). In the other Daucus taxa, the number of chromosome pairs with CentDc signals varied depending on the species, yet their centromeric localization was conserved. In addition, precise chromosome measurements performed in 16 accessions showed the inter- and intraspecific karyological relationships among them. Conclusions The presence of the CentDc repeats in the genomes of taxa belonging to both Daucus subclades and one outgroup species indicated the ancestral status of the repeat. The results of our study provide useful information for further evolutionary, cytotaxonomic, and phylogenetic research on the genus Daucus and may contribute to a better understanding of the dynamic evolution of centromeric satellites in plants.

2019 ◽  
Author(s):  
Andrea Acurio ◽  
Flor T. Rhebergen ◽  
Sarah Paulus ◽  
Virginie Courtier-Orgogozo ◽  
Michael Lang

AbstractBackgroundMale genitals have repeatedly evolved left-right asymmetries, and the causes of such evolution remain unclear. TheDrosophila nannopteragroup contains four species, among which three exhibit left-right asymmetries of distinct genital organs. In the most studied species,Drosophila pachea, males display asymmetric genital lobes and they mate right-sided on top of the female. Copulation position of the other species is unknown.ResultsTo assess whether the evolution of genital asymmetry could be linked to the evolution of one-sided mating, we examined phallus morphology and copulation position inD. pacheaand closely related species. The phallus was found to be symmetric in all investigated species exceptD. pachea, which display an asymmetric phallus with a right-sided gonopore, andD. acanthoptera, which harbor an asymmetrically bent phallus. In all examined species, males were found to position themselves symmetrically on top of the female, except inD. pacheaandD. nannoptera, where males mated right-sided, in distinctive, species-specific positions. In addition, the copulation duration was found to be increased innannopteragroup species compared to closely related outgroup species.ConclusionOur study shows that gains, and possibly losses, of asymmetry in genital morphology and mating position have evolved repeatedly in thenannopteragroup. Current data does not allow us to conclude whether genital asymmetry has evolved in response to changes in mating position, or vice versa.


2020 ◽  
Vol 160 (10) ◽  
pp. 610-624
Author(s):  
Shayer M.I. Alam ◽  
Stephen D. Sarre ◽  
Arthur Georges ◽  
Tariq Ezaz

Agamid lizards (Squamata: Agamidae) are karyotypically heterogeneous. Among the 101 species currently described from Australia, all are from the subfamily Amphibolurinae. This group is, with some exceptions, karyotypically conserved, and all species involving heterogametic sex show female heterogamety. Here, we describe the chromosomes of 2 additional Australian agamid lizards, <i>Tympanocryptis lineata</i> and <i>Rankinia diemensis</i>. These species are phylogenetically and cytogenetically sisters to the well-characterised <i>Pogona vitticeps,</i> but their sex chromosomes and other chromosomal characteristics are unknown. In this study, we applied advanced molecular cytogenetic techniques, such as fluorescence in situ hybridisation (FISH) and cross-species gene mapping, to characterise chromosomes and to identify sex chromosomes in these species. Our data suggest that both species have a conserved karyotype with <i>P. vitticeps</i> but with subtle rearrangements in the chromosomal landscapes. We could identify that <i>T. lineata</i> possesses a female heterogametic system (ZZ/ZW) with a pair of sex microchromosomes, while <i>R. diemensis</i> may have heterogametic sex chromosomes, but this requires further investigations. Our study shows the pattern of chromosomal rearrangements between closely related species, explaining the speciation within Australian agamid lizards of similar karyotypes.


1937 ◽  
Vol 28 (3) ◽  
pp. 409-416 ◽  
Author(s):  
W. E. H. Hodson

1. Reference is made to the proven capacity of aphides of the genus Capitophorus to transmit virus disease among strawberries, and attention is drawn to the confusion existing as to the actual synonymy of the insect principally concerned.2. For the first time sexual and asexual forms of the species commonly present in England have been observed together. Evidence is considered which suggests that the aphis is Capitophorus fragariae, Theo., and that American forms are in reality other, but closely related, species.3. The incidence of the aphis in the field is considered, and the biology as observed in field and laboratory is discussed.4. The economic significance of the aphis is referred to, and attention is drawn to the practical difficulties attending efforts to keep it in control, particularly in commercial strawberry-growing areas.


2021 ◽  
Vol 12 ◽  
Author(s):  
Nomar Espinosa Waminal ◽  
Remnyl Joyce Pellerin ◽  
Sang-Ho Kang ◽  
Hyun Hee Kim

Tandem repeats can occupy a large portion of plant genomes and can either cause or result from chromosomal rearrangements, which are important drivers of dysploidy-mediated karyotype evolution and speciation. To understand the contribution of tandem repeats in shaping the extant Senna tora dysploid karyotype, we analyzed the composition and abundance of tandem repeats in the S. tora genome and compared the chromosomal distribution of these repeats between S. tora and a closely related euploid, Senna occidentalis. Using a read clustering algorithm, we identified the major S. tora tandem repeats and visualized their chromosomal distribution by fluorescence in situ hybridization. We identified eight independent repeats covering ~85 Mb or ~12% of the S. tora genome. The unit lengths and copy numbers had ranges of 7–5,833 bp and 325–2.89 × 106, respectively. Three short duplicated sequences were found in the 45S rDNA intergenic spacer, one of which was also detected at an extra-NOR locus. The canonical plant telomeric repeat (TTTAGGG)n was also detected as very intense signals in numerous pericentromeric and interstitial loci. StoTR05_180, which showed subtelomeric distribution in Senna occidentalis, was predominantly pericentromeric in S. tora. The unusual chromosomal distribution of tandem repeats in S. tora not only enabled easy identification of individual chromosomes but also revealed the massive chromosomal rearrangements that have likely played important roles in shaping its dysploid karyotype.


HortScience ◽  
1992 ◽  
Vol 27 (6) ◽  
pp. 696c-696
Author(s):  
Ruth S. Kobayashi ◽  
John C. Bouwkamp ◽  
Stephen L. Sinden

Use of wild species for in vitro sweetpotato improvement has been limited, in part, by the lack of suitable regeneration systems for these species. Shoot regeneration in 4 closely related species, I. batatas, I. cordatotriloba, I. trifida and I. triloba, were evaluated. Callus was initiated using methods described by Otani and Shimada (1988). Calli were transferred to regeneration media containing 17.75 uM BAP and 0, 1, 10 and 100 uM PCIB. Organogenesis was enhanced by the presence of PCIB. With I. cordatotriloba calli grown on media with 10 uM PCIB, a 2-fold increase in the percentage of calli exhibiting shoot regeneration was observed as compared to calli grown on media with BAP alone. A significant increase in the average number of shoots per callus was also observed. The other species examined appeared to be less sensitive than I. cordatotriloba to the PCIB treatments.


The concept of ritualization, as used in the study of the signal movements of lower vertebrates, refers primarily to the evolutionary changes which such movements have undergone in adaptation to their function in communication. In this context, the term is thus used in reference only to movements which have such a function, and only when there is evidence that the resultant signal has undergone changes which make it more effective in that role. Many movements which influence the behaviour of others (e.g. penile erection, eating and drinking in rhesus monkeys, according to Altman 1962) have apparently not been ritualized, though homologous movements in other species may have been (e.g. penile erection in squirrel monkeys (Ploog & Maclean 1963)). The changes involved have almost invariably been evolutionary ones, and thus reference to ritualization implies evidence that the properties of the signal have changed on an evolutionary time scale. This usually comes from the comparative study of contemporary closely related species. Just as the comparison, between related species, of morphological structures may suggest not only homologies but also views as to the evolutionary origins of the homologous structures, so also does comparison of patterns of behaviour. In addition, just as comparison within a species of related structures, such as the segmental limbs of a crustacean, or of different developmental stages of the same structure, can provide evidence of the course of evolution, so also can comparison of related movement patterns (e.g. Lorenz 1935, 1941; Tinbergen 1952, 1959, 1962).


As species evolve along a phylogenetic tree, their phenotypes diverge. We expect closely related species to retain some phenotypic similarities owing to their shared evolutionary histories. The degree of similarity depends both on the phylogeny and on the detailed evolutionary changes that accumulate each generation. In this study, I review a general framework that can be used to translate between macroevolutionary patterns and the underlying microevolutionary process by comparing the observed relationships among measured species phenotypes and the expected relationship structure due to the phylogeny and underlying models of phenotypic evolution. I then show how the framework can be used to compare methods used (1) to reconstruct phylogenies, (2) to correct comparative data for phylogenetic non-independence, and (3) to infer details of the microevolutionary process from interspecific data and a phylogeny. Use of this framework and a microevolutionary perspective on the analysis of interspecific data opens up new fields of inquiry and many new uses for phylogenies and comparative data.


Parasitology ◽  
2002 ◽  
Vol 125 (2) ◽  
pp. 131-141 ◽  
Author(s):  
S. N. KLEEMAN ◽  
F. LE ROUX ◽  
F. BERTHE ◽  
R. D. ADLARD

Primers and DNA probes designed for use in the specific detection of the paramyxean parasites Marteilia sydneyi and Marteilia refringens were tested for their potential to cross-react with closely related species in Polymerase Chain Reaction (PCR) and in situ hybridization. PCR primers and a DNA probe designed within the ITS1 rRNA of M. sydneyi were specific for M. sydneyi when compared with related species of Marteilia and Marteilioides. PCR primers designed within the 18S rRNA of M. refringens were specific in the detection of this species in PCR while a DNA probe (named Smart 2) designed on the same gene cross-reacted with M. sydneyi in tissue sections of Saccostrea glomerata as well as Marteilioides sp. infecting Striostrea mytiloides. Though not species specific, the Smart 2 probe provided a stronger signal in detection of all stages of M. sydneyi than the ITS1 probe. The ITS probe is proposed for use as a confirmatory diagnostic tool for M. sydneyi.


Sign in / Sign up

Export Citation Format

Share Document