scholarly journals First core microsatellite panel identification in Apennine brown bears (Ursus arctos marsicanus): a collaborative approach

BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Erminia Scarpulla ◽  
Alessio Boattini ◽  
Mario Cozzo ◽  
Patrizia Giangregorio ◽  
Paolo Ciucci ◽  
...  

Abstract Background The low cost and rapidity of microsatellite analysis have led to the development of several markers for many species. Because in non-invasive genetics it is recommended to genotype individuals using few loci, generally a subset of markers is selected. The choice of different marker panels by different research groups studying the same population can cause problems and bias in data analysis. A priority issue in conservation genetics is the comparability of data produced by different labs with different methods. Here, we compared data from previous and ongoing studies to identify a panel of microsatellite loci efficient for the long-term monitoring of Apennine brown bears (Ursus arctos marsicanus), aiming at reducing genotyping uncertainty and allowing reliable individual identifications overtimes. Results We examined all microsatellite markers used up to now and identified 19 candidate loci. We evaluated the efficacy of 13 of the most commonly used loci analyzing 194 DNA samples belonging to 113 distinct bears selected from the Italian national biobank. We compared data from 4 different marker subsets on the basis of genotyping errors, allelic patterns, observed and expected heterozygosity, discriminatory powers, number of mismatching pairs, and probability of identity. The optimal marker set was selected evaluating the low molecular weight, the high discriminatory power, and the low occurrence of genotyping errors of each primer. We calibrated allele calls and verified matches among genotypes obtained in previous studies using the complete set of 13 STRs (Short Tandem Repeats), analyzing six invasive DNA samples from distinct individuals. Differences in allele-sizing between labs were consistent, showing a substantial overlap of the individual genotyping. Conclusions The proposed marker set comprises 11 Ursus specific markers with the addition of cxx20, the canid-locus less prone to genotyping errors, in order to prevent underestimation (maximizing the discriminatory power) and overestimation (minimizing the genotyping errors) of the number of Apennine brown bears. The selected markers allow saving time and costs with the amplification in multiplex of all loci thanks to the same annealing temperature. Our work optimizes the available resources by identifying a shared panel and a uniform methodology capable of improving comparisons between past and future studies.

2011 ◽  
Vol 60 (4) ◽  
pp. 335-339 ◽  
Author(s):  
EWA SADOWY ◽  
ALEKSANDRA SIEŃKO ◽  
WALERIA HRYNIEWICZ

Enterococcus faecalis represents recently an important etiological agent of health care-associated infections (HAIs) and there is a need for evaluation and comparison of typing methods available for this microorganism. We tested multilocus VNTR (variable-number tandem repeats) analysis (MLVA) on a well-characterized collection of 153 clinical isolates of E. faecalis, corresponding to 52 multilocus sequence types and 67 pulsed-field gel electrophoresis (PFGE) profiles. MLVA showed high discriminatory power, discerning 111 different types (diversity index equal 98.9%). The concordance MLVA/MLST and MLVA/PFGE was 0.95 and 0.74, respectively. High discriminatory power of MLVA indicates its utility for local epidemiology such as outbreak investigation, and for differentiation of clones defined by other methods.


Data in Brief ◽  
2020 ◽  
Vol 30 ◽  
pp. 105646
Author(s):  
Jacopo Morelli ◽  
Angela Briganti ◽  
Boris Fuchs ◽  
Ðuro Huber ◽  
Alina L. Evans ◽  
...  

2020 ◽  
Vol 9 ◽  
pp. 100094
Author(s):  
Jacopo Morelli ◽  
Angela Briganti ◽  
Boris Fuchs ◽  
Ðuro Huber ◽  
Alina L. Evans ◽  
...  

2012 ◽  
Vol 90 (6) ◽  
pp. 753-757 ◽  
Author(s):  
Johanna Painer ◽  
Andreas Zedrosser ◽  
Jon M. Arnemo ◽  
Åsa Fahlman ◽  
Sven Brunberg ◽  
...  

We compared anesthetic protocols with different doses of tiletamine–zolazepam (TZ) combined with medetomidine (M) for 288 yearling brown bear ( Ursus arctos L., 1758) immobilizations with the objective of finding a combination of doses that would provide fast induction with a duration of anesthesia long enough to minimize the need for administering additional drug. The duration of induction time and immobilization was dose-dependent. Increasing the M dose resulted in significantly shorter induction times and a lower probability of giving supplemental drugs. Increasing the TZ dose prolonged duration of anesthesia. For yearling brown bears in Scandinavia, captured shortly after den emergence in April and May, we recommend total dart doses of 1.0–1.66 mg M/dart, plus 62.5–125 mg TZ/dart, depending on the individual requirements for the length and depth of anaesthesia.


2021 ◽  
Vol 10 (13) ◽  
pp. 2986
Author(s):  
Laura Martinez Valenzuela ◽  
Juliana Draibe ◽  
Oriol Bestard ◽  
Xavier Fulladosa ◽  
Francisco Gómez-Preciado ◽  
...  

Background: Acute tubulointerstitial nephritis (ATIN) diagnosis lays on histological assessment through a kidney biopsy, given the absence of accurate non-invasive biomarkers. The aim of this study was to evaluate the accuracy of different urinary inflammation-related cytokines for the diagnostic of ATIN and its distinction from acute tubular necrosis (ATN). Methods: We included 33 patients (ATIN (n = 21), ATN (n = 12)), and 6 healthy controls (HC). We determined the urinary levels of 10 inflammation-related cytokines using a multiplex bead-based Luminex assay at the time of biopsy and after therapy, and registered main clinical, analytical and histological data. Results: At the time of biopsy, urinary levels of I-TAC/CXCL11, CXCL10, IL-6, TNFα and MCP-1 were significantly higher in ATIN compared to HC. A positive correlation between the extent of the tubulointerstitial cellular infiltrates in kidney biopsies and the urinary concentration of I-TAC/CXCL11, MIG/CXCL9, CXCL10, IL17, IFNα, MCP1 and EGF was observed. Notably, I-TAC/CXCL11, IL-6 and MCP-1 were significantly higher in ATIN than in ATN, with I-TAC/CXCL11 as the best discriminative classifier AUC (0.77, 95% CI 0.57–0.95, p = 0.02). A combinatory model of these three urinary cytokines increased the accuracy in the distinction of ATIN/ATN compared to the individual biomarkers. The best model resulted when combining the three cytokines with blood eosinophil and urinary leukocyte counts (LR = 9.76). Follow-up samples from 11ATIN patients showed a significant decrease in I-TAC/CXCL11, MIG/CXCL9 and CXCL10 levels. Conclusions: Urinary I-TAC/CXCL11, CXCL10, IL6 and MCP-1 levels accurately distinguish patients developing ATIN from ATN and healthy individuals and may serve as novel non-invasive biomarkers in this disease.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Supakorn Harnsoongnoen ◽  
Nuananong Jaroensuk

AbstractThe water displacement and flotation are two of the most accurate and rapid methods for grading and assessing freshness of agricultural products based on density determination. However, these techniques are still not suitable for use in agricultural inspections of products such as eggs that absorb water which can be considered intrusive or destructive and can affect the result of measurements. Here we present a novel proposal for a method of non-destructive, non-invasive, low cost, simple and real—time monitoring of the grading and freshness assessment of eggs based on density detection using machine vision and a weighing sensor. This is the first proposal that divides egg freshness into intervals through density measurements. The machine vision system was developed for the measurement of external physical characteristics (length and breadth) of eggs for evaluating their volume. The weighing system was developed for the measurement of the weight of the egg. Egg weight and volume were used to calculate density for grading and egg freshness assessment. The proposed system could measure the weight, volume and density with an accuracy of 99.88%, 98.26% and 99.02%, respectively. The results showed that the weight and freshness of eggs stored at room temperature decreased with storage time. The relationship between density and percentage of freshness was linear for the all sizes of eggs, the coefficient of determination (R2) of 0.9982, 0.9999, 0.9996, 0.9996 and 0.9994 for classified egg size classified 0, 1, 2, 3 and 4, respectively. This study shows that egg freshness can be determined through density without using water to test for water displacement or egg flotation which has future potential as a measuring system important for the poultry industry.


2011 ◽  
Vol 60 (3) ◽  
pp. 289-295 ◽  
Author(s):  
Antti Lavikainen ◽  
Sauli Laaksonen ◽  
Kimberlee Beckmen ◽  
Antti Oksanen ◽  
Marja Isomursu ◽  
...  

Author(s):  
Marco Vinicio Alban ◽  
Haechang Lee ◽  
Hanul Moon ◽  
Seunghyup Yoo

Abstract Thin dry electrodes are promising components in wearable healthcare devices. Assessing the condition of the human body by monitoring biopotentials facilitates the early diagnosis of diseases as well as their prevention, treatment, and therapy. Existing clinical-use electrodes have limited wearable-device usage because they use gels, require preparation steps, and are uncomfortable to wear. While dry electrodes can improve these issues and have demonstrated performance on par with gel-based electrodes, providing advantages in mobile and wearable applications; the materials and fabrication methods used are not yet at the level of disposable gel electrodes for low-cost mass manufacturing and wide adoption. Here, a low-cost manufacturing process for thin dry electrodes with a conductive micro-pyramidal array is presented for large-scale on-skin wearable applications. The electrode is fabricated using micromolding techniques in conjunction with solution processes in order to guarantee ease of fabrication, high device yield, and the possibility of mass production compatible with current semiconductor production processes. Fabricated using a conductive paste and an epoxy resin that are both biocompatible, the developed micro-pyramidal array electrode operates in a conformal, non-invasive manner, with low skin irritation, which ensures improved comfort for brief or extended use. The operation of the developed electrode was examined by analyzing electrode-skin-electrode impedance, electroencephalography, electrocardiography, and electromyography signals and comparing them with those measured simultaneously using gel electrodes.


Author(s):  
Massine GANA ◽  
Hakim ACHOUR ◽  
Kamel BELAID ◽  
Zakia CHELLI ◽  
Mourad LAGHROUCHE ◽  
...  

Abstract This paper presents a design of a low-cost integrated system for the preventive detection of unbalance faults in an induction motor. In this regard, two non-invasive measurements have been collected then monitored in real time and transmitted via an ESP32 board. A new bio-flexible piezoelectric sensor developed previously in our laboratory, was used for vibration analysis. Moreover an infrared thermopile was used for non-contact temperature measurement. The data is transmitted via Wi-Fi to a monitoring station that intervenes to detect an anomaly. The diagnosis of the motor condition is realized using an artificial neural network algorithm implemented on the microcontroller. Besides, a Kalman filter is employed to predict the vibrations while eliminating the noise. The combination of vibration analysis, thermal signature analysis and artificial neural network provides a better diagnosis. It ensures efficiency, accuracy, easy access to data and remote control, which significantly reduces human intervention.


Sign in / Sign up

Export Citation Format

Share Document