scholarly journals Putative antigenic proteins identified by comparative and subtractive reverse vaccinology in necrotic enteritis-causing Clostridium perfringens isolated from broiler chickens

BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Ilhem Meniaï ◽  
Alexandre Thibodeau ◽  
Sylvain Quessy ◽  
Valeria R. Parreira ◽  
Philippe Fravalo ◽  
...  

Abstract Background Avian necrotic enteritis (NE) caused by Clostridium perfringens is a disease with a major economic impact, generating losses estimated to 6 billion of dollars annually for the poultry industry worldwide. The incidence of the disease is particularly on the rise in broiler chicken flocks eliminating the preventive use of antibiotics. To date, no alternative allows for the efficient prevention of NE and a control of the disease using a vaccinal strategy would be mostly prized. For this purpose, comparative and subtractive reverse vaccinology identifying putative immunogenic bacterial surface proteins is one of the most promising approaches. Results A comparative genomic study was performed on 16 C. perfringens strains isolated from healthy broiler chickens and from broilers affected with necrotic enteritis. Results showed that the analyzed genomes were composed of 155,700 distinct proteins from which 13% were identified as extracellular, 65% as cytoplasmic and 22% as part of the bacterial membrane. The evaluation of the immunogenicity of these proteins was determined using the prediction software VaxiJen®. Conclusions For the most part, proteins with the highest scores were associated with an extracellular localisation. For all the proteins analyzed, the combination of both the immunogenicity score and the localisation prediction led to the selection of 12 candidate proteins that were mostly annotated as hypothetical proteins. We describe 6 potential candidates of higher interest due to their antigenic potential, their extracellular localisation, and their possible role in virulence of C. perfringens.

2006 ◽  
Vol 13 (12) ◽  
pp. 1358-1362 ◽  
Author(s):  
R. R. Kulkarni ◽  
V. R. Parreira ◽  
S. Sharif ◽  
J. F. Prescott

ABSTRACT Little is known about immunity to necrotic enteritis (NE) in chickens. A recent study of broiler chickens showed that protection against NE was associated with infection-immunization with virulent but not with avirulent Clostridium perfringens.In the current study, six secreted antigenic proteins unique to virulent C. perfringens that reacted to serum antibodies from immune birds were identified by mass spectrophotometry; three of these proteins are part of the VirR-VirS regulon.


Animals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 2027
Author(s):  
Doaa Ibrahim ◽  
Tamer Ahmed Ismail ◽  
Eman Khalifa ◽  
Shaimaa A. Abd El-Kader ◽  
Dalia Ibrahim Mohamed ◽  
...  

Necrotic enteritis (NE) caused by Clostridium perfringens (C. perfringens) results in impaired bird growth performance and increased production costs. Nanotechnology application in the poultry industry to control NE outbreaks is still not completely clarified. Therefore, the efficacy of dietary garlic nano-hydrogel (G-NHG) on broilers growth performance, intestinal integrity, economic returns and its potency to alleviate C. perfringens levels using NE challenge model were addressed. A total of 1200 male broiler chicks (Ross 308) were assigned into six groups; four supplemented with 100, 200, 300 or 400 mg of G-NHG/kg diet and co-challenged with C. perfringens at 21, 22 and 23 d of age and two control groups fed basal diet with or without C. perfringens challenge. Over the total growing period, the 400 mg/kg G-NHG group had the most improved body weight gain and feed conversion efficiency regardless of challenge. Parallel with these results, the mRNA expression of genes encoding digestive enzymes (alpha 2A amylase (AMY2A), pancreatic lipase (PNLIP) and cholecystokinin (CCK)) and intestinal barriers (junctional adhesion molecule-2 (JAM-2), occludin and mucin-2 (Muc-2)) were increased in groups fed G-NHG at higher levels to be nearly similar to those in the unchallenged group. At 14 d post challenge, real-time PCR results revealed that inclusion of G-NHG led to a dose-dependently decrease in the C. perfringens population, thereby decreasing the birds’ intestinal lesion score and mortality rates. Using 400 mg/kg of G-NHG remarkably ameliorated the adverse effects of NE caused by C. perfringens challenge, which contributed to better growth performance of challenged birds with rational economic benefits.


2017 ◽  
Vol 08 (03) ◽  
Author(s):  
David Xiang Y ◽  
Zhiyong H ◽  
Wenyue W ◽  
Colin P ◽  
Zhi cheng X

2020 ◽  
Vol 9 (4) ◽  
Author(s):  
Catherine Ausland ◽  
Adil Sabr Al-Ogaili ◽  
Juan D. Latorre ◽  
Guillermo Tellez-Isaias ◽  
Billy M. Hargis ◽  
...  

Clostridium perfringens causes severe gastrointestinal diseases, which include necrotic enteritis (NE) in chickens, a deadly disease worldwide. We report here the draft genome sequence of Clostridium perfringens strain TAMU, which was used in developing an NE chicken challenge model. This C. perfringens TAMU genome sequence will aid in advancing potential intervention strategies to reduce NE pathogenesis.


2007 ◽  
Vol 73 (21) ◽  
pp. 7110-7113 ◽  
Author(s):  
Weiduo Si ◽  
Joshua Gong ◽  
Yanming Han ◽  
Hai Yu ◽  
John Brennan ◽  
...  

ABSTRACT Cell proliferation and alpha-toxin gene expression of Clostridium perfringens in relation to the development of necrotic enteritis (NE) were investigated. Unlike bacitracin-treated chickens, non-bacitracin-treated birds exhibited typical NE symptoms and reduced growth performance. They also demonstrated increased C. perfringens proliferation and alpha-toxin gene expression that were positively correlated and progressed according to the regression model y = b 0 + b 1 X − b 2 X 2. The average C. perfringens count of 5 log10 CFU/g in the ileal digesta appears to be a threshold for developing NE with a lesion score of 2.


2020 ◽  
Vol 9 (33) ◽  
Author(s):  
Saswati Biswas ◽  
Indranil Biswas

ABSTRACT Here, we report the complete genome sequence of Streptococcus mutans strain MD, which produces potent mutacins capable of inhibiting streptococci. MD is a relatively uncharacterized strain whose genome information was unavailable. This study provides useful information for comparative genomic study and for understanding the repertoire of mutacins in S. mutans.


2019 ◽  
Vol 7 (3) ◽  
pp. 71 ◽  
Author(s):  
Cristiano Bortoluzzi ◽  
Bruno Serpa Vieira ◽  
Juliano Cesar de Paula Dorigam ◽  
Anita Menconi ◽  
Adebayo Sokale ◽  
...  

The objective of this study was to evaluate the effects of the dietary supplementation of Bacillus subtilis DSM 32315 (probiotic) on the performance and intestinal microbiota of broiler chickens infected with Clostridium perfringens (CP). One-day-old broiler chickens were assigned to 3 treatments with 8 replicate pens (50 birds/pen). The treatments were: non-infected control; infected control; and infected supplemented with probiotic (1 × 106 CFU/g of feed). On day of hatch, all birds were sprayed with a coccidia vaccine based on the manufacturer recommended dosage. On d 18–20 the infected birds were inoculated with CP via feed. Necrotic enteritis (NE) lesion score was performed on d 21. Digestive tract of 2 birds/pen was collected on d 21 to analyze the ileal and cecal microbiota by 16S rRNA sequencing. Performance was evaluated on d 28 and 42. On d 21, probiotic supplementation reduced (p < 0.001) the severity of NE related lesion versus infected control birds. On d 28, feed efficiency was improved (p < 0.001) in birds supplemented with probiotic versus infected control birds. On d 42, body weight gain (BW gain) and feed conversion ratio (FCR) were improved (p < 0.001) in probiotic supplemented birds versus infected control birds. The diversity, composition and predictive function of the intestinal microbial digesta changed with the infection but the supplementation of probiotic reduced these variations. Therefore, dietary supplementation of Bacillus subtilis DSM 32315 was beneficial in attenuating the negative effects of CP challenge on the performance and intestinal microbiota of broilers chickens.


Sign in / Sign up

Export Citation Format

Share Document