scholarly journals Transcriptional induction of capsidiol synthesis genes by wounding can promote pathogen signal-induced capsidiol synthesis

2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Tomoya Kojima ◽  
Nobuhide Asakura ◽  
Shiori Hasegawa ◽  
Taishi Hirasawa ◽  
Yuri Mizuno ◽  
...  

Abstract Background Plants are exposed to various forms of environmental stress. Penetration by pathogens is one of the most serious environmental insults. Wounding caused by tissue damage or herbivory also affects the growth and reproduction of plants. Moreover, wounding disrupts physical barriers present at the plant surface and increases the risk of pathogen invasion. Plants cope with environmental stress by inducing a variety of responses. These stress responses must be tightly controlled, because their unnecessary induction is detrimental to plant growth. In tobacco, WIPK and SIPK, two wound-responsive mitogen-activated protein kinases, have been shown to play important roles in regulating wound responses. However, their contribution to downstream wound responses such as gene expression is not well understood. Results To identify genes regulated by WIPK and SIPK, the transcriptome of wounded WIPK/SIPK-suppressed plants was analyzed. Among the genes down-regulated in WIPK/SIPK-suppressed plants, the largest group consisted of those involved in the production of antimicrobial phytoalexins. Almost all genes involved in the biosynthesis of capsidiol, a major phytoalexin in tobacco, were transcriptionally induced by wounding in WIPK/SIPK-dependent and -independent manners. 5-epi-aristolochene synthase (EAS) is the committing enzyme for capsidiol synthesis, and the promoter of EAS4, a member of the EAS family, was analyzed. Reporter gene analysis revealed that at least two regions each 40–50 bp length were involved in activation of the EAS4 promoter by wounding, as well as by artificial activation of WIPK and SIPK. Unlike transcripts of the capsidiol synthesis genes, accumulation of EAS protein and capsidiol itself were not induced by wounding; however, wounding significantly enhanced their subsequent induction by a pathogen-derived elicitor. Conclusions Our results suggest a so-called priming phenomenon since the induction of EAS by wounding is only visible at the transcript level. By inducing transcripts, not the proteins, of EAS and possibly other capsidiol synthesis genes at wound sites, plants can produce large quantities of capsidiol quickly if pathogens invade the wound site, whereas plants can minimize energy loss and avoid the cytotoxic effects of capsidiol where pathogens do not gain entry during wound healing.

2021 ◽  
Vol 22 (4) ◽  
pp. 1543
Author(s):  
Li Lin ◽  
Jian Wu ◽  
Mingyi Jiang ◽  
Youping Wang

Due to global warming and population growth, plants need to rescue themselves, especially in unfavorable environments, to fulfill food requirements because they are sessile organisms. Stress signal sensing is a crucial step that determines the appropriate response which, ultimately, determines the survival of plants. As important signaling modules in eukaryotes, plant mitogen-activated protein kinase (MAPK) cascades play a key role in regulating responses to the following four major environmental stresses: high salinity, drought, extreme temperature and insect and pathogen infections. MAPK cascades are involved in responses to these environmental stresses by regulating the expression of related genes, plant hormone production and crosstalk with other environmental stresses. In this review, we describe recent major studies investigating MAPK-mediated environmental stress responses. We also highlight the diverse function of MAPK cascades in environmental stress. These findings help us understand the regulatory network of MAPKs under environmental stress and provide another strategy to improve stress resistance in crops to ensure food security.


2011 ◽  
Vol 59 (3) ◽  
pp. 285-290
Author(s):  
R. Dóczi

Due to their sessile life style plants have to cope with a variety of unfavourable environmental conditions. Extracellular stimuli are perceived by specific sensors and receptors and are transmitted within the cell by various signal transduction pathways to trigger appropriate responses. The mitogen-activated protein (MAP) kinase cascades are well-conserved signalling pathway modules found in all eukaryotes. Activated MAP kinases phosphorylate an array of substrate proteins. Phosphorylation results in altered substrate activities that mediate a wide range of responses, including changes in gene expression. The genome of the model plant Arabidopsis thaliana contains genes encoding 20 mitogen-activated protein kinases and 10 MAPK kinases. In plants MAP kinases play a central role in environmental stress signalling; however, our knowledge mainly comes from results on three MAP kinases and their immediate upstream activators. Further studies on additional members of the plant MAP kinase repertoire together with the identification of downstream substrates and connections to specific upstream signal receptors are required to elucidate their specific functions within environmental stress signalling networks. Understanding the mechanisms of specificity in signal flow is indispensable for engineering improved crops with modified MAP kinase signalling for agricultural purposes.


2009 ◽  
Vol 75 (11) ◽  
pp. 3787-3795 ◽  
Author(s):  
Yongjun Zhang ◽  
Jianhua Zhao ◽  
Weiguo Fang ◽  
Jianqing Zhang ◽  
Zhibing Luo ◽  
...  

ABSTRACT Beauveria bassiana is an economically important insect-pathogenic fungus which is widely used as a biocontrol agent to control a variety of insect pests. However, its insecticide efficacy in the field is often influenced by adverse environmental factors. Thus, understanding the genetic regulatory processes involved in the response to environmental stress would facilitate engineering and production of a more efficient biocontrol agent. Here, a mitogen-activated protein kinase (MAPK)-encoding gene, Bbhog1, was isolated from B. bassiana and shown to encode a functional homolog of yeast HIGH-OSMOLARITY GLYCEROL 1 (HOG1). A Bbhog1 null mutation was generated in B. bassiana by targeted gene replacement, and the resulting mutants were more sensitive to hyperosmotic stress, high temperature, and oxidative stress than the wild-type controls. These results demonstrate the conserved function of HOG1 MAPKs in the regulation of abiotic stress responses. Interestingly, ΔBbhog1 mutants exhibited greatly reduced pathogenicity, most likely due to a decrease in spore viability, a reduced ability to attach to insect cuticle, and a reduction in appressorium formation. The transcript levels of two hydrophobin-encoding genes, hyd1 and hyd2, were dramatically decreased in a ΔBbhog1 mutant, suggesting that Bbhog1 may regulate the expression of the gene associated with hydrophobicity or adherence.


Plants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1261
Author(s):  
Péter Pálfi ◽  
László Bakacsy ◽  
Henrietta Kovács ◽  
Ágnes Szepesi

Hypusination is a unique posttranslational modification of eIF5A, a eukaryotic translation factor. Hypusine is a rare amino acid synthesized in this process and is mediated by two enzymes, deoxyhypusine synthase (DHS) and deoxyhypusine hydroxylase (DOHH). Despite the essential participation of this conserved eIF5A protein in plant development and stress responses, our knowledge of its proper function is limited. In this review, we demonstrate the main findings regarding how eIF5A and hypusination could contribute to plant-specific responses in growth and stress-related processes. Our aim is to briefly discuss the plant-specific details of hypusination and decipher those signal pathways which can be effectively modified by this process. The diverse functions of eIF5A isoforms are also discussed in this review.


Plants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1371
Author(s):  
Madiha Zaynab ◽  
Athar Hussain ◽  
Yasir Sharif ◽  
Mahpara Fatima ◽  
Mateen Sajid ◽  
...  

Mitogen-activated protein kinase (MAPK) cascades are the universal signal transduction networks that regulate cell growth and development, hormone signaling, and other environmental stresses. However, their essential contribution to plant tolerance is very little known in the potato (Solanum tuberosum) plant. The current study carried out a genome-wide study of StMAPK and provided a deep insight using bioinformatics tools. In addition, the relative expression of StMAPKs was also assessed in different plant tissues. The similarity search results identified a total of 22 StMAPK genes in the potato genome. The sequence alignment also showed conserved motif TEY/TDY in most StMAPKs with conserved docking LHDXXEP sites. The phylogenetic analysis divided all 22 StMAPK genes into five groups, i.e., A, B, C, D, and E, showing some common structural motifs. In addition, most of the StMAPKs were found in a cluster form at the terminal of chromosomes. The promoter analysis predicted several stress-responsive Cis-acting regulatory elements in StMAPK genes. Gene duplication under selection pressure also indicated several purifying and positive selections in StMAPK genes. In potato, StMAPK2, StMAPK6, and StMAPK19 showed a high expression in response to heat stress. Under ABA and IAA treatment, the expression of the total 20 StMAPK genes revealed that ABA and IAA played an essential role in this defense process. The expression profiling and real-time qPCR (RT-qPCR) exhibited their high expression in roots and stems compared to leaves. These results deliver primary data for functional analysis and provide reference data for other important crops.


2007 ◽  
Vol 41 (20) ◽  
pp. 6891-6900 ◽  
Author(s):  
Victor J. Nesatyy ◽  
Marc J.-F. Suter

2007 ◽  
Vol 405 (3) ◽  
pp. 617-623 ◽  
Author(s):  
Emma V. Jones ◽  
Mark J. Dickman ◽  
Alan J. Whitmarsh

The JNK (c-Jun N-terminal kinase)/mitogen-activated protein kinase signalling pathway is a major mediator of stress responses in cells, including the response to DNA damage. DNA damage also causes the stabilization and activation of p73, a member of the p53 family of transcription factors. p73, like p53, can mediate apoptosis by up-regulating the expression of pro-apoptotic genes, including Bax (Bcl2-associated X protein) and PUMA (p53 up-regulated modulator of apoptosis). Changes in p73 expression have been linked to tumour progression, particularly in neuroblastomas, whereas in tumours that feature inactivated p53 there is evidence that p73 may mediate the apoptotic response to chemotherapeutic agents. In the present study, we demonstrate a novel link between the JNK signalling pathway and p73. We use pharmacological and genetic approaches to show that JNK is required for p73-mediated apoptosis induced by the DNA damaging agent cisplatin. JNK forms a complex with p73 and phosphorylates it at several serine and threonine residues. The mutation of JNK phosphorylation sites in p73 abrogates cisplatin-induced stabilization of p73 protein, leading to a reduction in p73 transcriptional activity and reduced p73-mediated apoptosis. Our results demonstrate that the JNK pathway is an important regulator of DNA damage-induced apoptosis mediated by p73.


EMBO Reports ◽  
2004 ◽  
Vol 5 (11) ◽  
pp. 1058-1063 ◽  
Author(s):  
Caroline R Craig ◽  
Jill L Fink ◽  
Yoshimasa Yagi ◽  
Y Tony Ip ◽  
Ross L Cagan

Aquaculture ◽  
2021 ◽  
pp. 737310
Author(s):  
Sayed HaidarAbbas Raz ◽  
Sameh A. Abdelnour ◽  
Mashael Alhumaidi Alotaibi ◽  
Qwiat AlGabbani ◽  
Mohammed A.E. Naiel ◽  
...  

Development ◽  
1997 ◽  
Vol 124 (24) ◽  
pp. 5107-5113
Author(s):  
Y. Hirao ◽  
J.J. Eppig

Oocytes of almost all vertebrates become arrested at metaphase II to await fertilization. Arrest is achieved with the participation of a protein complex known as cytostatic factor (CSF) that stabilizes histone H1 kinase activity. MOS and mitogen-activated protein kinase (MAPK) are important components of CSF. Strain LT/Sv mice, and strains related to LT/Sv, produce a high percentage of atypical oocytes that are arrested at metaphase I when normal oocytes have progressed to metaphase II. The potential role of MOS in metaphase I arrest was investigated using strain LT/Sv and LT-related recombinant inbred strains, LTXBO and CX8-4. MOS and MAPK are produced and functional in maturing LT oocytes. Two experimental paradigms were used to reduce or delete MOS in LT oocytes and assess effects on metaphase I arrest. First, sense and antisense Mos oligonucleotides were microinjected into metaphase I-arrested oocytes. Antisense, but not sense, Mos oligonucleotides promoted the activation of metaphase I-arrested oocytes. Second, mice carrying a Mos null mutation were crossed with LT mice, the null mutation was backcrossed three times to LT mice, and Mos(+/−) N3 mice were intercrossed to produce Mos(−/−), Mos(+/−) and Mos(+/+) N3F1 mice. Oocytes of all three Mos genotypes of N3F1 mice sustained meiotic arrest for 17 hours indicating that metaphase I arrest is not initiated by a MOS-dependent mechanism. However, unlike Mos(+/+) and Mos(+/−) CX8-4 N3F1 oocytes, metaphase I arrest of Mos(−/−) CX8-4 N3F1 oocytes was not sustained after 17 hours and became reversed gradually. These results, like the antisense Mos oligonucleotide microinjection experiments, suggest that MOS participates in sustaining metaphase I arrest in LT oocytes.


Sign in / Sign up

Export Citation Format

Share Document