scholarly journals Mitogen-Activated Protein Kinase Expression Profiling Revealed Its Role in Regulating Stress Responses in Potato (Solanum tuberosum)

Plants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1371
Author(s):  
Madiha Zaynab ◽  
Athar Hussain ◽  
Yasir Sharif ◽  
Mahpara Fatima ◽  
Mateen Sajid ◽  
...  

Mitogen-activated protein kinase (MAPK) cascades are the universal signal transduction networks that regulate cell growth and development, hormone signaling, and other environmental stresses. However, their essential contribution to plant tolerance is very little known in the potato (Solanum tuberosum) plant. The current study carried out a genome-wide study of StMAPK and provided a deep insight using bioinformatics tools. In addition, the relative expression of StMAPKs was also assessed in different plant tissues. The similarity search results identified a total of 22 StMAPK genes in the potato genome. The sequence alignment also showed conserved motif TEY/TDY in most StMAPKs with conserved docking LHDXXEP sites. The phylogenetic analysis divided all 22 StMAPK genes into five groups, i.e., A, B, C, D, and E, showing some common structural motifs. In addition, most of the StMAPKs were found in a cluster form at the terminal of chromosomes. The promoter analysis predicted several stress-responsive Cis-acting regulatory elements in StMAPK genes. Gene duplication under selection pressure also indicated several purifying and positive selections in StMAPK genes. In potato, StMAPK2, StMAPK6, and StMAPK19 showed a high expression in response to heat stress. Under ABA and IAA treatment, the expression of the total 20 StMAPK genes revealed that ABA and IAA played an essential role in this defense process. The expression profiling and real-time qPCR (RT-qPCR) exhibited their high expression in roots and stems compared to leaves. These results deliver primary data for functional analysis and provide reference data for other important crops.

PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0258657
Author(s):  
Abhirup Paul ◽  
Anurag P. Srivastava ◽  
Shreya Subrahmanya ◽  
Guoxin Shen ◽  
Neelam Mishra

Mitogen activated protein kinase kinase kinase (MAPKKK) form the upstream component of MAPK cascade. It is well characterized in several plants such as Arabidopsis and rice however the knowledge about MAPKKKs in tea plant is largely unknown. In the present study, MAPKKK genes of tea were obtained through a genome wide search using Arabidopsis thaliana as the reference genome. Among 59 candidate MAPKKK genes in tea, 17 genes were MEKK-like, 31 genes were Raf-like and 11 genes were ZIK- like. Additionally, phylogenetic relationships were established along with structural analysis, which includes gene structure, its location as well as conserved motifs, cis-acting regulatory elements and functional domain signatures that were systematically examined. Also, on the basis of one orthologous gene found between tea and Arabidopsis, functional interaction was carried out in C. sinensis based on an Arabidopsis association model. The expressional profiles indicated major involvement of MAPKKK genes from tea in response to various abiotic stress factors. Taken together, this study provides the targets for additional inclusive identification, functional study, and provides comprehensive knowledge for a better understanding of the MAPKKK cascade regulatory network in C. sinensis.


BMC Genomics ◽  
2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Archita Chatterjee ◽  
Abhirup Paul ◽  
G. Meher Unnati ◽  
Ruchika Rajput ◽  
Trisha Biswas ◽  
...  

Abstract Background Mitogen Activated Protein Kinase (MAPK) cascade is a fundamental pathway in organisms for signal transduction. Though it is well characterized in various plants, there is no systematic study of this cascade in tea. Result In this study, 5 genes of Mitogen Activated Protein Kinase Kinase (MKK) and 16 genes of Mitogen Activated Protein Kinase (MPK) in Camellia sinensis were found through a genome-wide search taking Arabidopsis thaliana as the reference genome. Also, phylogenetic relationships along with structural analysis which includes gene structure, location as well as protein conserved motifs and domains, were systematically examined and further, predictions were validated by the results. The plant species taken for comparative study clearly displayed segmental duplication, which was a significant candidate for MAPK cascade expansion. Also, functional interaction was carried out in C. sinensis based on the orthologous genes in Arabidopsis. The expression profiles linked to various stress treatments revealed wide involvement of MAPK and MAPKK genes from Tea in response to various abiotic factors. In addition, the expression of these genes was analysed in various tissues. Conclusion This study provides the targets for further comprehensive identification, functional study, and also contributed for a better understanding of the MAPK cascade regulatory network in C. sinensis.


1999 ◽  
Vol 19 (5) ◽  
pp. 3857-3868 ◽  
Author(s):  
Heidrun Ellinger-Ziegelbauer ◽  
Kathleen Kelly ◽  
Ulrich Siebenlist

ABSTRACT Signal-induced proliferation, differentiation, or stress responses of cells depend on mitogen-activated protein kinase (MAPK) cascades, the core modules of which consist of members of three successively acting kinase families (MAPK kinase kinase [MAP3K], MAPK kinase, and MAPK). It is demonstrated here that the MEKK3 kinase inhibits cell proliferation, a biologic response not commonly associated with members of the MAP3K family of kinases. A conditionally activated form of MEKK3 stably expressed in fibroblasts arrests these cells in early G1. MEKK3 critically blocks mitogen-driven expression of cyclin D1, a cyclin which is essential for progression of fibroblasts through G1. The MEKK3-induced block of cyclin D1 expression and of cell cycle progression may be mediated via p38 MAPK, a downstream effector of MEKK3. The MEKK3-mediated block of proliferation also reverses Ras-induced cellular transformation, suggesting possible tumor-suppressing functions for this kinase. Together, these results suggest an involvement of the MEKK3 kinase in negative regulation of cell cycle progression, and they provide the first insights into biologic activities of this kinase.


2021 ◽  
Author(s):  
Zhi-dan He ◽  
Mi-lin Tao ◽  
David W M Leung ◽  
Xiao-yu Yan ◽  
Long Chen ◽  
...  

Abstract Exposure to ultraviolet B radiation (UV-B) stress can have serious effects on the growth and development of plants. Germin-like proteins (GLPs) may be involved in different abiotic and biotic stress responses in different plants, but little is known about the role of GLPs in UV-B stress response and acclimation in plants. In the present study, knockout of germin-like protein 8-14 (OsGLP1) using the CRISPR/Cas9 system resulted in mutant rice (Oryza sativa L.) plants (herein called glp1) that exhibited UV-B-dependent formation of lesion mimic in leaves. Moreover, glp1 grown under solar radiation (including UV-B) showed decreased plant height and increased leaf angle, but we observed no significant differences in phenotypes between wild-type (WT) plants and glp1 grown under artificial light lacking UV-B. Fv/Fm, Y (II) and the expression of many genes, based on RNA-seq analysis, related to photosynthesis were also only reduced in glp1, but not in WT, after transfer from a growth cabinet illuminated with artificial white light lacking UV-B to growth under natural sunlight. The genes-associated with flavonoid metabolism as well as UV RESISTANCE LOCUS 8 (OsUVR8), PHYTOCHROME INTERACTING FACTOR-LIKE 15-like (OsPIF3), pyridoxal 5'-phosphate synthase subunit PDX1.2 (OsPDX1.2), deoxyribodipyrimidine photolyase (OsPHR) and deoxyribodipyrimidine photolyase family protein-like (OsPHRL) exhibited lower expression levels, while higher expression levels of mitogen-activated protein kinase 5-like (OsMPK3), mitogen-activated protein kinase 13-like (OsMPK13) and transcription factor MYB4-like (OsMYB4) were observed in glp1 than in WT after transfer from a growth cabinet illuminated with artificial white light to growth under natural sunlight. Therefore, mutations in OsGLP1 resulted in rice plants more sensitive to UV-B and reduced expression of some genes for UV-B protection, suggesting that OsGLP1 is involved in acclimation to UV-B radiation.


2016 ◽  
Vol 141 (5) ◽  
pp. 490-497 ◽  
Author(s):  
Xiaojuan Zong ◽  
Jiawei Wang ◽  
Li Xu ◽  
Hairong Wei ◽  
Xin Chen ◽  
...  

Improving the poor resistance to environmental stress and the weak development of roots system in the cherry (Prunus) rootstock ‘Gisela 6’ (Prunus cerasus × Prunus canescens) is of great importance for sustainable sweet cherry (Prunus avium) production. Although a stable genetic transformation system has been developed for ‘Gisela 6’ rootstock, there is little information on the identification of genes involved in stress resistance. Using the cherry rootstock cultivar Gisela 6, we identified a total of 12 novel mitogen-activated protein kinase (MAPK) genes, designated PcMPKs. Phylogenetic analysis revealed that the PcMPKs could be divided into four groups, designated A, B, C, and D. In addition, an intron–exon structure analysis for the PcMPKs was conducted to help further understand the structure–function relationships within the cherry family. The expression profiles of PcMPKs in response to abiotic and biotic stresses were characterized using quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Five PcMPKs (i.e., PcMPK4-1, PcMPK4-2, PcMPK3, PcMPK6, and PcMPK18) exhibited differential expression, and suggested their potential roles in plant responding to various stresses. This study provides the basis for further analysis on the physiological functions of PcMPKs in environmental tolerance in cherry rootstocks.


Biologia ◽  
2014 ◽  
Vol 69 (11) ◽  
Author(s):  
Teng Zhang ◽  
Yuan Wang ◽  
Juan Wang ◽  
Xiao Xia ◽  
Ning Yang ◽  
...  

AbstractMitogen-activated protein kinase (MAPK) cascades participate in various processes, including plant growth and development as well as biotic and abiotic stress responses. MAPK kinases (MKKs), which link MPKs and MPKK kinases, are involved in MAPK cascades by mediating various plant stress responses. However, only a few MKKs from Brassica campestris (rape) have been functionally characterized. This study delivers the results from isolation and characterization of a novel gene, MKK2, from rape. Bioinformatics analysis revealed that the cDNA length of MKK2 is 1,344 bp with an open reading frame of 1,068 bp, which encodes a polypeptide containing 355 amino acids. The obtained MKK2 exhibited a predicted molecular mass of 39.3 kDa and an isoelectric point of 6.8. Quantitative real-time polymerase chain reaction analysis revealed that MKK2 expression can be induced by cold and salt. Western blot analysis revealed that MKK2 protein expression can be induced by cold, salt, and UV-B radiation. The MKK2 protein was localized in the nucleus. These results suggest that MKK2 is important for the regulation of cold- and salt-stress responses in plants.


1996 ◽  
Vol 16 (12) ◽  
pp. 6687-6697 ◽  
Author(s):  
S Ludwig ◽  
K Engel ◽  
A Hoffmeyer ◽  
G Sithanandam ◽  
B Neufeld ◽  
...  

Recently we have identified a mitogen-activated protein kinase (MAPK)-activated protein kinase, named 3pK (G. Sithanandam, F. Latif, U. Smola, R. A. Bernal, F.-M. Duh, H. Li, I. Kuzmin, V. Wixler, L. Geil, S. Shresta, P. A. Lloyd, S. Bader, Y. Sekido, K. D. Tartof, V. I. Kashuba, E. R. Zabarovsky, M. Dean, G. Klein, B. Zbar, M. I. Lerman, J. D. Minna, U. R. Rapp, and A. Allikmets, Mol. Cell. Biol. 16:868-876, 1996). In vitro characterization of the kinase revealed that 3pK is activated by ERK. It was further shown that 3pK is phosphorylated in vivo after stimulation of cells with serum. However, the in vivo relevance of this observation in terms of involvement of the Raf/MEK/ERK cascade has not been established. Here we show that 3pK is activated in vivo by the growth inducers serum and tetradecanoyl phorbol acetate in promyelocytic HL60 cells and transiently transfected embryonic kidney 293 cells. Activation of 3pK was Raf dependent and was mediated by the Raf/MEK/ERK kinase cascade. 3pK was also shown to be activated after stress stimulation of cells. In vitro studies with recombinant proteins demonstrate that in addition to ERK, members of other subgroups of the MAPK family, namely, p38RK and Jun-N-terminal kinases/stress-activated protein kinases, were also able to phosphorylate and activate 3pK. Cotransfection experiments as well as the use of a specific inhibitor of p38RK showed that these in vitro upstream activators also function in vivo, identifying 3pK as the first kinase to be activated through all three MAPK cascades. Thus, 3pK is a novel convergence point of different MAPK pathways and could function as an integrative element of signaling in both mitogen and stress responses.


2021 ◽  
Vol 22 (4) ◽  
pp. 1543
Author(s):  
Li Lin ◽  
Jian Wu ◽  
Mingyi Jiang ◽  
Youping Wang

Due to global warming and population growth, plants need to rescue themselves, especially in unfavorable environments, to fulfill food requirements because they are sessile organisms. Stress signal sensing is a crucial step that determines the appropriate response which, ultimately, determines the survival of plants. As important signaling modules in eukaryotes, plant mitogen-activated protein kinase (MAPK) cascades play a key role in regulating responses to the following four major environmental stresses: high salinity, drought, extreme temperature and insect and pathogen infections. MAPK cascades are involved in responses to these environmental stresses by regulating the expression of related genes, plant hormone production and crosstalk with other environmental stresses. In this review, we describe recent major studies investigating MAPK-mediated environmental stress responses. We also highlight the diverse function of MAPK cascades in environmental stress. These findings help us understand the regulatory network of MAPKs under environmental stress and provide another strategy to improve stress resistance in crops to ensure food security.


2001 ◽  
Vol 12 (6) ◽  
pp. 1137-1150
Author(s):  
MARCO FOSCHI ◽  
ANDREY SOROKIN ◽  
PHILLIP PRATT ◽  
ANN MCGINTY ◽  
GIORGIO LA VILLA ◽  
...  

Abstract. Endothelin-1 (ET-1) has been implicated in the pathogenesis of renal inflammation. This study investigated the mechanisms underlying the synergistic upregulation of preproET-1 gene expression in human mesangial cells after co-stimulation with thrombin and tumor necrosis factor α (TNFα). Whereas thrombin induced a moderate upregulation of preproET-1 mRNA, co-stimulation with TNFα resulted in a strong and protracted upregulation of this mRNA species. Thrombin+TNFα-induced upregulation of preproET-1 expression was found to require p38 mitogen-activated protein kinase and protein kinases C, whereas activation of extracellular signal-regulated kinase, c-Jun-N-terminal kinase, or intracellular Ca2+ release were not required. Actinomycin D chase experiments suggested that enhanced stability of preproET-1 mRNA did not account for the increase in transcript levels. PreproET-1 promoter analysis demonstrated that the 5′-flanking region of preproET-1 encompassed positive regulatory elements engaged by thrombin. Negative modulation of thrombin-induced activation exerted by the distal 5′ portion of preproET-1 promoter (-4.4 kbp to 204 bp) was overcome by co-stimulation with TNFα, providing a possible mechanism underlying the synergistic upregulation of preproET-1 expression by these two agonists. In conclusion, human mesangial cell expression of preproET-1 may be increased potently in the presence of two common proinflammatory mediators, thereby providing a potential mechanism for ET-1 production in inflammatory renal disease.


Sign in / Sign up

Export Citation Format

Share Document