scholarly journals Plasticity in plastid redox networks: evolution of glutathione-dependent redox cascades and glutathionylation sites

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Stefanie J. Müller-Schüssele ◽  
Finja Bohle ◽  
Jacopo Rossi ◽  
Paolo Trost ◽  
Andreas J. Meyer ◽  
...  

Abstract Background Flexibility of plant metabolism is supported by redox regulation of enzymes via posttranslational modification of cysteine residues, especially in plastids. Here, the redox states of cysteine residues are partly coupled to the thioredoxin system and partly to the glutathione pool for reduction. Moreover, several plastid enzymes involved in reactive oxygen species (ROS) scavenging and damage repair draw electrons from glutathione. In addition, cysteine residues can be post-translationally modified by forming a mixed disulfide with glutathione (S-glutathionylation), which protects thiol groups from further oxidation and can influence protein activity. However, the evolution of the plastid glutathione-dependent redox network in land plants and the conservation of cysteine residues undergoing S-glutathionylation is largely unclear. Results We analysed the genomes of nine representative model species from streptophyte algae to angiosperms and found that the antioxidant enzymes and redox proteins belonging to the plastid glutathione-dependent redox network are largely conserved, except for lambda- and the closely related iota-glutathione S-transferases. Focussing on glutathione-dependent redox modifications, we screened the literature for target thiols of S-glutathionylation, and found that 151 plastid proteins have been identified as glutathionylation targets, while the exact cysteine residue is only known for 17% (26 proteins), with one or multiple sites per protein, resulting in 37 known S-glutathionylation sites for plastids. However, 38% (14) of the known sites were completely conserved in model species from green algae to flowering plants, with 22% (8) on non-catalytic cysteines. Variable conservation of the remaining sites indicates independent gains and losses of cysteines at the same position during land plant evolution. Conclusions We conclude that the glutathione-dependent redox network in plastids is highly conserved in streptophytes with some variability in scavenging and damage repair enzymes. Our analysis of cysteine conservation suggests that S-glutathionylation in plastids plays an important and yet under-investigated role in redox regulation and stress response.

2020 ◽  
Author(s):  
Stefanie J. Mueller-Schuessele ◽  
Finja A. Bohle ◽  
Jacopo Rossi ◽  
Paolo Trost ◽  
Andreas J. Meyer ◽  
...  

Abstract Background: Flexibility of plant metabolism is supported by redox regulation of enzymes via posttranslational modification of cysteine residues, especially in plastids. Here, the redox states of cysteine residues are partly coupled to the thioredoxin system and partly to the glutathione pool for reduction. Moreover, several plastid enzymes involved in reactive oxygen species (ROS) scavenging and damage repair draw electrons from glutathione. In addition, cysteine residues can be post-translationally modified by forming a disulfide with glutathione (S-glutathionylation), which protects thiol groups from further oxidation and can influence protein activity. However, the evolution of the plastid glutathione-dependent redox network in land plants and the conservation of cysteine residues undergoing S-glutathionylation is largely unclear.Results: We analysed the genomes of nine representative model species from streptophyte algae to angiosperms and find that the components of the plastid glutathione-dependent redox network are largely conserved, except for lambda- and the closely related iota-glutathione S-transferases. Screening the literature for target thiols of S-glutathionylation, we find that 151 plastid proteins have been identified as glutathionylation targets, while the exact cysteine residue is only known for 17% (26 proteins), with one or multiple sites per protein, resulting in 37 known S-glutathionylation sites for plastids. However, 38% (14) of the known sites were completely conserved in model species from green algae to flowering plants, with 22% (8) on non-catalytic cysteines. Variable conservation of the remaining sites indicates independent gains and losses of cysteines at the same position during land plant evolution.Conclusions: We conclude that the glutathione dependent redox network in plastids is highly conserved in streptophytes with some variability in scavenging and damage repair enzymes. Our analysis of cysteine conservation suggests that S-glutathionylation in plastids plays an important and yet under-investigated role in redox regulation and stress response.


F1000Research ◽  
2019 ◽  
Vol 8 ◽  
pp. 268 ◽  
Author(s):  
Daniel Schubert

Epigenetic gene regulation ensures the mitotically or meiotically stable heritability (or both) of gene expression or protein activity states and maintains repetitive element repression and cellular identities. The repressive Polycomb-group (PcG) proteins consist of several large complexes that control cellular memory by acting on chromatin and are antagonized by the Trithorax-group proteins. Especially, Polycomb repressive complex 2 (PRC2) is highly conserved in plants and animals but its function in unicellular eukaryotes and during land plant evolution is less understood. Additional PcG complexes and associated proteins are only partially conserved and have evolved in a lineage-specific manner. In this review, I will focus on recent advances in the understanding of PcG function in the green lineage and its contribution to land plant evolution.


Author(s):  
Anita Roth-Nebelsick ◽  
Tatiana Miranda ◽  
Martin Ebner ◽  
Wilfried Konrad ◽  
Christopher Traiser

AbstractTrees are the fundamental element of forest ecosystems, made possible by their mechanical qualities and their highly sophisticated conductive tissues. The evolution of trees, and thereby the evolution of forests, were ecologically transformative and affected climate and biogeochemical cycles fundamentally. Trees also offer a substantial amount of ecological niches for other organisms, such as epiphytes, creating a vast amount of habitats. During land plant evolution, a variety of different tree constructions evolved and their constructional principles are a subject of ongoing research. Understanding the “natural construction” of trees benefits strongly from methods and approaches from physics and engineering. Plant water transport is a good example for the ongoing demand for interdisciplinary efforts to unravel form-function relationships on vastly differing scales. Identification of the unique mechanism of water long-distance transport requires a solid basis of interfacial physics and thermodynamics. Studying tree functions by using theoretical approaches is, however, not a one-sided affair: The complex interrelationships between traits, functionality, trade-offs and phylogeny inspire engineers, physicists and architects until today.


Open Biology ◽  
2011 ◽  
Vol 1 (3) ◽  
pp. 110010 ◽  
Author(s):  
Clive Metcalfe ◽  
Peter Cresswell ◽  
Laura Ciaccia ◽  
Benjamin Thomas ◽  
A. Neil Barclay

Redox conditions change in events such as immune and platelet activation, and during viral infection, but the biochemical consequences are not well characterized. There is evidence that some disulfide bonds in membrane proteins are labile while others that are probably structurally important are not exposed at the protein surface. We have developed a proteomic/mass spectrometry method to screen for and identify non-structural, redox-labile disulfide bonds in leucocyte cell-surface proteins. These labile disulfide bonds are common, with several classes of proteins being identified and around 30 membrane proteins regularly identified under different reducing conditions including using enzymes such as thioredoxin. The proteins identified include integrins, receptors, transporters and cell–cell recognition proteins. In many cases, at least one cysteine residue was identified by mass spectrometry as being modified by the reduction process. In some cases, functional changes are predicted (e.g. in integrins and cytokine receptors) but the scale of molecular changes in membrane proteins observed suggests that widespread effects are likely on many different types of proteins including enzymes, adhesion proteins and transporters. The results imply that membrane protein activity is being modulated by a ‘redox regulator’ mechanism.


2013 ◽  
Vol 2013 ◽  
pp. 1-14 ◽  
Author(s):  
Maria S. Krasnikova ◽  
Denis V. Goryunov ◽  
Alexey V. Troitsky ◽  
Andrey G. Solovyev ◽  
Lydmila V. Ozerova ◽  
...  

PCR-based approach was used as a phylogenetic profiling tool to probe genomic DNA samples from representatives of evolutionary distant moss taxa, namely, classes Bryopsida, Tetraphidopsida, Polytrichopsida, Andreaeopsida, and Sphagnopsida. We found relatives of allPhyscomitrella patensmiR390 and TAS3-like loci in these plant taxa excluding Sphagnopsida. Importantly, cloning and sequencing ofMarchantia polymorphagenomic DNA showed miR390 and TAS3-like sequences which were also found among genomic reads ofM. polymorphaat NCBI database. Our data suggest that the ancient plant miR390-dependent TAS molecular machinery firstly evolved to target AP2-like mRNAs in Marchantiophyta and only then both ARF- and AP2-specific mRNAs in mosses. The presented analysis shows that moss TAS3 families may undergone losses of tasiAP2 sites during evolution toward ferns and seed plants. These data confirm that miR390-guided genes coding for ARF- and AP2-specific ta-siRNAs have been gradually changed during land plant evolution.


2007 ◽  
Vol 81 (10) ◽  
pp. 5212-5224 ◽  
Author(s):  
Michael Mach ◽  
Karolina Osinski ◽  
Barbara Kropff ◽  
Ursula Schloetzer-Schrehardt ◽  
Magdalena Krzyzaniak ◽  
...  

ABSTRACT Glycoproteins M and N (gM and gN, respectively) are among the few proteins that are conserved across the herpesvirus family. The function of the complex is largely unknown. Whereas deletion from most alphaherpesviruses has marginal effects on the replication of the respective viruses, both proteins are essential for replication of human cytomegalovirus (HCMV). We have constructed a series of mutants in gN to study the function of this protein. gN of HCMV is a type I glycoprotein containing a short carboxy-terminal domain of 14 amino acids, including two cysteine residues directly adjacent to the predicted transmembrane anchor at positions 125 and 126. Deletion of the entire carboxy-terminal domain as well as substitution with the corresponding region from alpha herpesviruses or mutations of both cysteine residues resulted in a replication-incompetent virus. Recombinant viruses containing point mutations of either cysteine residue could be generated. These viruses were profoundly defective for replication. Complex formation of the mutant gNs with gM and transport of the complex to the viral assembly compartment appeared unaltered compared to the wild type. However, in infected cells, large numbers of capsids accumulated in the cytoplasm that failed to acquire an envelope. Transiently expressed gN was shown to be modified by palmitic acid at both cysteine residues. In summary, our data suggest that the carboxy-terminal domain of gN plays a critical role in secondary envelopment of HCMV and that palmitoylation of gN appears to be essential for function in secondary envelopment of HCMV and virus replication.


2012 ◽  
Vol 441 (3) ◽  
pp. 823-839 ◽  
Author(s):  
Markus Lehrke ◽  
Steffen Rump ◽  
Torsten Heidenreich ◽  
Josef Wissing ◽  
Ralf R. Mendel ◽  
...  

The Moco (molybdenum cofactor) sulfurase ABA3 from Arabidopsis thaliana catalyses the sulfuration of the Moco of aldehyde oxidase and xanthine oxidoreductase, which represents the final activation step of these enzymes. ABA3 consists of an N-terminal NifS-like domain that exhibits L-cysteine desulfurase activity and a C-terminal domain that binds sulfurated Moco. The strictly conserved Cys430 in the NifS-like domain binds a persulfide intermediate, which is abstracted from the substrate L-cysteine and finally needs to be transferred to the Moco of aldehyde oxidase and xanthine oxidoreductase. In addition to Cys430, another eight cysteine residues are located in the NifS-like domain, with two of them being highly conserved among Moco sulfurase proteins and, at the same time, being in close proximity to Cys430. By determination of the number of surface-exposed cysteine residues and the number of persulfide-binding cysteine residues in combination with the sequential substitution of each of the nine cysteine residues, a second persulfide-binding cysteine residue, Cys206, was identified. Furthermore, the active-site Cys430 was found to be located on top of a loop structure, formed by the two flanking residues Cys428 and Cys435, which are likely to form an intramolecular disulfide bridge. These findings are confirmed by a structural model of the NifS-like domain, which indicates that Cys428 and Cys435 are within disulfide bond distance and that a persulfide transfer from Cys430 to Cys206 is indeed possible.


Sign in / Sign up

Export Citation Format

Share Document