scholarly journals Transcriptomics of different tissues of blueberry and diversity analysis of rhizosphere fungi under cadmium stress

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Shaopeng Chen ◽  
QianQian Zhuang ◽  
XiaoLei Chu ◽  
ZhiXin Ju ◽  
Tao Dong ◽  
...  

AbstractBlueberry (Vaccinium ssp.) is a perennial shrub belonging to the family Ericaceae, which is highly tolerant of acid soils and heavy metal pollution. In the present study, blueberry was subjected to cadmium (Cd) stress in simulated pot culture. The transcriptomics and rhizosphere fungal diversity of blueberry were analyzed, and the iron (Fe), manganese (Mn), copper (Cu), zinc (Zn) and cadmium (Cd) content of blueberry tissues, soil and DGT was determined. A correlation analysis was also performed. A total of 84 374 annotated genes were identified in the root, stem, leaf and fruit tissue of blueberry, of which 3370 were DEGs, and in stem tissue, of which 2521 were DEGs. The annotation data showed that these DEGs were mainly concentrated in a series of metabolic pathways related to signal transduction, defense and the plant–pathogen response. Blueberry transferred excess Cd from the root to the stem for storage, and the highest levels of Cd were found in stem tissue, consistent with the results of transcriptome analysis, while the lowest Cd concentration occurred in the fruit, Cd also inhibited the absorption of other metal elements by blueberry. A series of genes related to Cd regulation were screened by analyzing the correlation between heavy metal content and transcriptome results. The roots of blueberry rely on mycorrhiza to absorb nutrients from the soil. The presence of Cd has a significant effect on the microbial community composition of the blueberry rhizosphere. The fungal family Coniochaetaceae, which is extremely extremelytolerant, has gradually become the dominant population. The results of this study increase our understanding of the plant regulation mechanism for heavy metals, and suggest potential methods of soil remediation using blueberry.

2020 ◽  
Vol 21 (21) ◽  
pp. 8375
Author(s):  
Joanna Gajewska ◽  
Nur Afifah Azzahra ◽  
Özgün Ali Bingöl ◽  
Karolina Izbiańska-Jankowska ◽  
Tomasz Jelonek ◽  
...  

Heavy metal pollution causes many soils to become a toxic environment not only for plants, but also microorganisms; however, little is known how heavy metal contaminated environment affects metabolism of phytopathogens and their capability of infecting host plants. In this study the oomycete Phytophthora infestans (Mont.) de Bary, the most harmful pathogen of potato, growing under moderate cadmium stress (Cd, 5 mg/L) showed nitro-oxidative imbalance associated with an enhanced antioxidant response. Cadmium notably elevated the level of nitric oxide, superoxide and peroxynitrite that stimulated nitrative modifications within the RNA and DNA pools in the phytopathogen structures. In contrast, the protein pool undergoing nitration was diminished confirming that protein tyrosine nitration is a flexible element of the oomycete adaptive strategy to heavy metal stress. Finally, to verify whether Cd is able to modify P. infestans pathogenicity, a disease index and molecular assessment of disease progress were analysed indicating that Cd stress enhanced aggressiveness of vr P. infestans towards various potato cultivars. Taken together, Cd not only affected hyphal growth rate and caused biochemical changes in P. infestans structures, but accelerated the pathogenicity as well. The nitro-oxidative homeostasis imbalance underlies the phytopathogen adaptive strategy and survival in the heavy metal contaminated environment.


Author(s):  
Mahesh K. Mahatma ◽  
Nidhi Radadiya ◽  
Vipul B. Parekh ◽  
Bhavika Dobariya ◽  
Lalit Mahatma

Expression of S-Adenosylmethionine synthetase (SAMS) gene in pigeon pea (Cajanus cajan L.) was analyzed by qRT PCR during abiotic stresses viz., drought, heavy metal (CdCl2) and cold. Maximum expression of SAMS gene in the leaves were observed at 3 days after drought stress with 15% PEG. Conversely, its expression was not detected in leaves and roots at cadmium stress but transcripts were down regulated as compared to the control. After 6 days of stress expression of SAMS gene was increased in leaves and roots as compared to the control but it was lower than its expression at 3 days after stress. The activities of antioxidative enzymes like glutathione reductase, glutathione-s-transferase, ascorbate peroxidase and metabolite constituents like polyamines and glycine betaine were also analyzed. The activities of antioxidative enzymes and concentration of glycine betaine showed remarkable increase in response to all stresses, except ascorbate peroxidase in heavy metal stress.


2021 ◽  
Vol 9 ◽  
Author(s):  
Tilak Nayak ◽  
Debjit De ◽  
Parimal Karmakar ◽  
Argha Deb ◽  
Paltu Kumar Dhal

Radon and heavy metal (HM) contamination in drinking water and their impact on health have been reported earlier. However, relatively little is known about the microbial community in drinking water with gradients of radon and the drivers of microbial community patterns in such water. With this view, we first examine microbial dynamics of drinking water in the permissible level of 93 ± 2 Bq/l as control, 510 ± 1.5 6 Bq/l and 576 ± 2 Bq/l as medium, and 728 ± 3 Bq/l as high radon-containing tube wells from Dumka and Godda districts, which comes under a major fault of the eastern fringes of India. Attempts have also been made to predict the impact of the radon contamination gradient and other water environmental parameters on community structure. The measured physicochemical character revealed strong clustering by the sampling site with respect to its radon and HM content. The radon-contaminated sites represent HM-rich nutrient-limited sites compared to the control. Radon (Rn), HM (Pb, Cu, and As), and total suspended solids (TSSs) were the most determinant variable among the parameters and influenced the microbial community composition of that region. The microbial diversity of those sites was lower, and this measured diversity decreased gradually on the sites with an increased gradient of radon contamination. The dominant microbial families in the contaminated sites were Moraxellaceae, Chitinophagaceae, unclassified Candidatus Azambacteria, unclassified Candidatus Moranbacteria, unclassified Candidatus Collierbacteria, and Gammaproteobacterial members, which are reported to abundantly inhabit radiation and chemolithotrophic environments and pose better radionuclide protective mechanisms, while the bacterial members dominant in the control site were Comamonadaceae, Rhodocyclaceae, Nitrospirales Incertae Sedis, cvE6, unclassified Woesearchaeota (DHVEG-6), and Holophagaceae, which are reported to be abundant in natural soil and drinking water, and labile in harsh environments. Relative sequence abundance of Comamonadaceae was decreasing on the sites with an increasing radon gradient, while the opposite trend was observed for Chitinophagaceae. The distribution of such microbial assemblages is linked to radon and heavy metal, highlighting that taxa with distinct environmental preferences underlie apparent clustering by sites; thus, we can utilize them for biostimulation-based in situ bioremediation purposes.


2018 ◽  
Vol 64 (5) ◽  
pp. 305-316 ◽  
Author(s):  
Fengqiu An ◽  
Zhan Diao ◽  
Jialong Lv

Heavy metal pollution has become a widespread environmental problem due to rapid economic development. The phylogenetic diversity and structure of microbial communities in lead (Pb)-contaminated Lou soils were investigated using Illumina MiSeq sequencing of 16S rRNA genes. The presence of Pb2+ in soil showed weak impact on the diversity of soil bacteria community, but it influenced the abundance of some genera of bacteria, as well as soil physicochemical properties. We found significant differences in the relative abundances of heavy-metal-resistant bacteria such as Bacillus, Streptococcus, and Arthrobacter at the genus level. Available Pb and total Pb negatively correlated with soil organic matter but positively affected available phosphorus. The abundance of main bacteria phyla was highly correlated with total Pb. The relative abundance of Gemmatimonadetes, Nitrospirae, and Planctomycetes was negatively correlated with total Pb. Collectively, Pb influences both the microbial community composition and physicochemical properties of soil.


2021 ◽  
Vol 12 ◽  
Author(s):  
Shengqiao Long ◽  
Hui Tong ◽  
Xuxiang Zhang ◽  
Shuyu Jia ◽  
Manjia Chen ◽  
...  

Heavy metal pollution that results from electronic waste (e-waste) recycling activities has severe ecological environmental toxicity impacts on recycling areas. The distribution of heavy metals and the impact on the bacteria in these areas have received much attention. However, the diversity and composition of the microbial communities and the characteristics of heavy metal resistance genes (HMRGs) in the river sediments after long-term e-waste contamination still remain unclear. In this study, eight river sediment samples along a river in a recycling area were studied for the heavy metal concentration and the microbial community composition. The microbial community consisted of 13 phyla including Firmicutes (ranging from 10.45 to 36.63%), Proteobacteria (11.76 to 32.59%), Actinobacteria (14.81 to 27.45%), and unclassified bacteria. The abundance of Firmicutes increased along with the level of contaminants, while Actinobacteria decreased. A canonical correspondence analysis (CCA) showed that the concentration of mercury was significantly correlated with the microbial community and species distribution, which agreed with an analysis of the potential ecological risk index. Moreover, manually curated HMRGs were established, and the HMRG analysis results according to Illumina high-throughput sequencing showed that the abundance of HMRGs was positively related to the level of contamination, demonstrating a variety of resistance mechanisms to adapt, accommodate, and live under heavy metal-contaminated conditions. These findings increase the understanding of the changes in microbial communities in e-waste recycling areas and extend our knowledge of the HMRGs involved in the recovery of the ecological environment.


Sign in / Sign up

Export Citation Format

Share Document