scholarly journals California TRV-based VIGS vectors mediate gene silencing at elevated temperatures but with greater growth stunting

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Jamilur Rahman ◽  
Ian T. Baldwin ◽  
Klaus Gase

Abstract Background Tobacco rattle virus (TRV) based virus-induced gene silencing (VIGS), a widely used functional genomics tool, requires growth temperatures typically lower than those of the plant’s native environment. Enabling VIGS under native conditions in the field according to applicable safety regulations could be a revolutionary advance for ecological research. Results Here, we report the development of an enhanced thermal tolerant VIGS vector system based on a TRV California isolate. cDNA clones representing the whole viral genome were sequenced and used to construct separate binary plant transformation vectors for functional elements of RNA1 (6765 nt) and RNA2 (3682 nt). VIGS of target genes was induced by transient transformation of the host plant with both vectors or by treating the host plant with sap from already VIGS induced plants. In Nicotiana attenuata the silencing efficiency of the PDS (phytoene desaturase) gene was 90% at 28 °C and 78% at 30 °C. Silencing at these temperatures was more prominent and durable than silencing induced by the widely used TRV PpK20-based pBINTRA6/pTV00 system, but was associated with a viral phenotype. Differences in the suppressor protein and RNA dependent RNA polymerase sequences between the TRV California isolate and PpK20 may be the reason for their different thermal tolerance. Conclusions The new TRV California-based VIGS vectors induce gene silencing in Nicotiana attenuata at higher temperatures than the existing pBINTRA6/pTV00 vector system, but cause greater growth defects. The new vector system opens up an avenue to study genes functions in planta under field conditions.

Author(s):  
Verónica Aragonés ◽  
Flavio Aliaga ◽  
Fabio Pasin ◽  
José-Antonio Daròs

Genome editing and gene expression engineering using CRISPR-Cas systems in plants usually rely on labor-intensive tissue culture approaches to generate stably transformed plants that express the components of the reaction. Viral vectors have demonstrated to be a quick and effective alternative to express multiple guide RNAs, DNA templates for homologous recombination, and even Cas nucleases. Here we have developed an improved vector system based on tobacco rattle virus (TRV) to simplify logistics in genome editing and gene silencing approaches. The new system consists in a single Agrobacterium tumefaciens clone co-transformed with two compatible mini binary vectors from which TRV RNA1 and an engineered version of TRV RNA2 are expressed. Sequences of recombinant proteins, gene fragments for virus-induced gene silencing (VIGS) or guide RNAs can be easily inserted by one-step digestion-ligation and homology-based cloning methods in the RNA2 plasmid to produce vectors with a size substantially smaller than usual. Using this new one-Agrobacterium TRV mini vector system, we show robust VIGS of an endogenous host gene after infiltration of bacterial suspensions at low optical densities, and efficient production of recombinant proteins in Nicotiana benthamiana. Most importantly, we also show highly efficient heritable genome editing in more than half of the seedling originating from inoculated N. benthamiana plants that express Cas9.


2019 ◽  
Vol 74 (5-6) ◽  
pp. 151-159
Author(s):  
Feng Zhu ◽  
Yanping Che ◽  
Fei Xu ◽  
Yangkai Zhou ◽  
Kun Qian ◽  
...  

Abstract Virus-induced gene silencing (VIGS) is an effective strategy for rapid gene function analysis. It is well established that the NAC transcription factor and salicylic acid (SA) signal pathway play essential roles in response to biotic stresses. However, simultaneous silencing of two target genes using VIGS in plants has been rarely reported. Therefore, in this report, we performed VIGS to silence simultaneously the SA-binding protein 2 (NbSABP2) and NbNAC1 in Nicotiana benthamiana to investigate the gene silencing efficiency of simultaneous silencing of two genes. We first cloned the full-length NbNAC1 gene, and the characterization of NbNAC1 was also analysed. Overlap extension polymerase chain reaction (PCR) analysis showed that the combination of NbSABP2 and NbNAC1 was successfully amplified. Bacteria liquid PCR confirmed that the combination of NbSABP2 and NbNAC1 was successfully inserted into the tobacco rattle virus vector. The results showed that the leaves from the NbSABP2 and NbNAC1 gene-silenced plants collapsed slightly, with browning at the base of petiole or veina. Quantitative real-time PCR results showed that the expression of NbSABP2 and NbNAC1 were significantly reduced in 12 days post silenced plants after tobacco rattle virus infiltration compared with the control plants. Overall, our results suggest that VIGS can be used to silence simultaneously two target genes.


PLoS ONE ◽  
2015 ◽  
Vol 10 (8) ◽  
pp. e0136234 ◽  
Author(s):  
Karin Groten ◽  
Nabin T. Pahari ◽  
Shuqing Xu ◽  
Maja Miloradovic van Doorn ◽  
Ian T. Baldwin

2013 ◽  
Author(s):  
Radi Aly ◽  
John I. Yoder

Broomrapes (Orobanche/Phelipanchespp.) are holo parasitic plants that subsist on the roots of a variety of agricultural crops and cause severe losses to the yield quality and quantity. Effective methods for controlling parasitic weeds are scarce, with only a few known cases of genetic resistance. In the current study, we proposed an improved strategy for the control of parasitic weeds based on trans-specific gene-silencing of three parasite genes at once. We used two strategies to express dsRNA containing selected sequences of three Phelipancheaegyptiacagenes PaACS, PaM6PR and PaPrx1 (pma): transient expression using Tobacco rattle virus (TRV:pma) as a virus-induced gene-silencing (VIGS) vector and stable expression in transgenic tomato Solanumlycopersicum(Mill.) plants harboring a hairpin construct (pBINPLUS35:pma). siRNA-mediated transgene-silencing (20–24 nt) was detected in the host plants. Our results demonstrate that the quantities of PaACSand PaM6PR transcripts from P. aegyptiacatubercles grown on transgenic tomato or on Tobacco rattle virus-infected Nicotianabenthamianaplants were significantly reduced. However, only partial reductions in the quantity of PaPrx1 transcripts were observed in the parasite tubercles grown on tomato and on N. benthamianaplants. Concomitant with the suppression of the target genes, there were significant decreases in the number and weight of the parasite tubercles that grew on the host plants, in both the transient and the stable experimental systems. The results of the work carried out using both strategies point to the movement of mobile exogenous siRNA from the host to the parasite, leading to the impaired expression of essential parasite target genes. In light of the importance of parasitic weeds to world agriculture and the difficulty of obtaining resistance by conventional methods, we assume that genetic resistance based on the silencing of key metabolic genes in the parasite is now feasible. BARD Report - Project4622 Page 2 of 60 


Plant Methods ◽  
2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Decai Tuo ◽  
Peng Zhou ◽  
Pu Yan ◽  
Hongguang Cui ◽  
Yang Liu ◽  
...  

Abstract Background Cassava is an important crop for food security and industry in the least-developed and developing countries. The completion of the cassava genome sequence and identification of large numbers of candidate genes by next-generation sequencing provide extensive resources for cassava molecular breeding and increase the need for rapid and efficient gene function analysis systems in cassava. Several plant virus-induced gene silencing (VIGS) systems have been developed as reverse genetic tools for rapid gene function analysis in cassava. However, these VIGS vectors could cause severe viral symptoms or inefficient gene silencing. Results In this study, we constructed agroinfection-compatible infectious cDNA clones of cassava common mosaic virus isolate CM (CsCMV-CM, genus Potexvirus, family Alphaflexiviridae) that causes systemic infection with mild symptoms in cassava. CsCMV-CM was then modified to a viral vector carrying the Nimble cloning frame, which facilitates the rapid and high-throughput cloning of silencing fragments into the viral genome. The CsCMV-based vector successfully silenced phytoene desaturase (PDS) and magnesium chelatase subunit I (ChlI) in different cassava varieties and Nicotiana benthamiana. The silencing of the ChlI gene could persist for more than two months. Conclusions This CsCMV-based VIGS system provides a new tool for rapid and efficient gene function studies in cassava.


Plant Methods ◽  
2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Kunxin Wu ◽  
Yadan Wu ◽  
Chunwei Zhang ◽  
Yan Fu ◽  
Zhixin Liu ◽  
...  

Abstract Background Virus-induced gene silencing (VIGS) is a useful tool for functional characterizations of plant genes. However, the penetrance of VIGS varies depending on the genes to be silenced, and has to be evaluated by examining the transcript levels of target genes. Results In this report, we report the development of a novel VIGS vector that permits a preliminary assessment of the silencing penetrance. This new vector is based on an attenuated variant of Turnip crinkle virus (TCV) known as CPB that can be readily used in Arabidopsis thaliana to interrogate genes of this model plant. A CPB derivative, designated CPB1B, was produced by inserting a 46 nucleotide section of the Arabidopsis PHYTOENE DESATURASE (PDS) gene into CPB, in antisense orientation. CPB1B induced robust PDS silencing, causing easily visible photobleaching in systemically infected Arabidopsis leaves. More importantly, CPB1B can accommodate additional inserts, derived from other Arabidopsis genes, causing the silencing of two or more genes simultaneously. With photobleaching as a visual marker, we adopted the CPB1B vector to validate the involvement of DICER-LIKE 4 (DCL4) in antiviral defense against TCV. We further revealed the involvement of ARGONAUTE 2 (AGO2) in PDS silencing and antiviral defense against TCV in dcl2drb4 double mutant plants. These results demonstrated that DOUBLE-STRANDED RNA-BINDING PROTEIN 4 (DRB4), whose protein product (DRB4) commonly partners with DCL4 in the antiviral silencing pathway, was dispensable for PDS silencing induced by CPB1B derivative in dcl2drb4 double mutant plants. Conclusions The CPB1B-based vector developed in this work is a valuable tool with visualizable indicator of the silencing penetrance for interrogating Arabidopsis genes, especially those involved in the RNA silencing pathways.


2006 ◽  
Vol 33 (4) ◽  
pp. 347 ◽  
Author(s):  
Changchun Wang ◽  
Xinzhong Cai ◽  
Xuemin Wang ◽  
Zhong Zheng

Arabidopsis thaliana (L.) Heynh. is a model plant species in which to study plant gene functions. Recently developed virus-induced gene silencing (VIGS) offers a rapid and high-throughput technique platform for gene function analysis. In this paper we report optimisation of tobacco rattle virus (TRV)-induced gene silencing in Arabidopsis. The parameters potentially affecting the efficiency of VIGS in Arabidopsis were investigated. These included the concentration and pre-incubation of Agrobacterium inocula (agro-inocula), the concentration of acetosyringone included in agro-inocula, the Agrobacterium inoculation (agro-inoculation) method, the ecotypes and the growth stages of Arabidopsis plants for agro-inoculation, and the growth temperature of agro-inoculated plants. The optimised VIGS procedure involves preparing the agro-inocula with OD600 of 2.0, pre-incubating for 2 h in infiltration buffer containing 200 μm acetosyringone, agro-inoculating by vacuum infiltration, and growth of agro-inoculated plants at 22 −24°C. Following this procedure consistent and highly efficient VIGS was achieved for the genes encoding phytoene desaturase (PDS) and actin in Arabidopsis. The silencing phenotype lasts for at least 6 weeks, and is applicable in at least seven ecotypes, including Col-0, Cvi-0, Sd, Nd-1, Ws-0, Bay-0 and Ler. TRV-induced VIGS was expressed not only in leaves, but also in stems, inflorescences and siliques. However, VIGS was not transmissible through seed to the subsequent generation. The optimised procedure of the TRV-induced gene silencing should facilitate high-throughput functional analysis of genes in Arabidopsis.


2019 ◽  
Vol 20 (16) ◽  
pp. 3976 ◽  
Author(s):  
Hongqiu Zeng ◽  
Yanwei Xie ◽  
Guoyin Liu ◽  
Yunxie Wei ◽  
Wei Hu ◽  
...  

Agrobacterium-mediated transient expression and virus-induced gene silencing (VIGS) are very useful in functional genomics in plants. However, whether these methods are effective in cassava (Manihot esculenta), one of the most important tropical crops, remains elusive. In this study, we used green fluorescent protein (GFP) and β-glucuronidase (GUS) as reporter genes in a transient expression assay. GFP or GUS could be detected in the infiltrated leaves at 2 days postinfiltration (dpi) and were evidenced by visual GFP and GUS assays, reverse-transcription PCR, and Western blot. In addition, phytoene desaturase (PDS) was used to show the silencing effect in a VIGS system. Both Agrobacterium GV3101 and AGL-1 with tobacco rattle virus (TRV)-MePDS-infiltrated distal leaves showed an albino phenotype at 20 dpi; in particular, the AGL-1-infiltrated plants showed an obvious albino area in the most distal leaves. Moreover, the silencing effect was validated by molecular identification. Notably, compared with the obvious cassava mosaic disease symptom infiltrated by African-cassava-mosaic-virus-based VIGS systems in previous studies, TRV-based VIGS-system-infiltrated cassava plants did not show obvious virus-induced disease symptoms, suggesting a significant advantage. Taken together, these methods could promote functional genomics in cassava.


Viruses ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 310 ◽  
Author(s):  
Junying Liu ◽  
Huiyan Fan ◽  
Ying Wang ◽  
Chenggui Han ◽  
Xianbing Wang ◽  
...  

Beet necrotic yellow vein virus (BNYVV) infections induce stunting and leaf curling, as well as root and floral developmental defects and leaf senescence in Nicotiana benthamiana. A microarray analysis with probes capable of detecting 1596 candidate microRNAs (miRNAs) was conducted to investigate differentially expressed miRNAs and their targets upon BNYVV infection of N. benthamiana plants. Eight species-specific miRNAs of N. benthamiana were identified. Comprehensive characterization of the N. benthamiana microRNA profile in response to the BNYVV infection revealed that 129 miRNAs were altered, including four species-specific miRNAs. The targets of the differentially expressed miRNAs were predicted accordingly. The expressions of miR164, 160, and 393 were up-regulated by BNYVV infection, and those of their target genes, NAC21/22, ARF17/18, and TIR, were down-regulated. GRF1, which is a target of miR396, was also down-regulated. Further genetic analysis of GRF1, by Tobacco rattle virus-induced gene silencing, assay confirmed the involvement of GRF1 in the symptom development during BNYVV infection. BNYVV infection also induced the up-regulation of miR168 and miR398. The miR398 was predicted to target umecyanin, and silencing of umecyanin could enhance plant resistance against viruses, suggesting the activation of primary defense response to BNYVV infection in N. benthamiana. These results provide a global profile of miRNA changes induced by BNYVV infection and enhance our understanding of the mechanisms underlying BNYVV pathogenesis.


Sign in / Sign up

Export Citation Format

Share Document