scholarly journals Oral administration of cystine and theanine attenuates 5-fluorouracil-induced intestinal mucositis and diarrhea by suppressing both glutathione level decrease and ROS production in the small intestine of mucositis mouse model

BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Junya Yoneda ◽  
Sachiko Nishikawa ◽  
Shigekazu Kurihara

Abstract Background Chemotherapy is frequently used in cancer treatment; however, it may cause adverse events, which must be managed. Reactive oxygen species (ROS) have been reported to be involved in the induction of intestinal mucositis and diarrhea, which are common side effects of treatment with fluoropyrimidine 5-fluorouracil (5-FU). Our previous studies have shown that oral administration of cystine and theanine (CT) increases glutathione (GSH) production in vivo. In the present study, we hypothesized that CT might inhibit oxidative stress, including the overproduction of ROS, and attenuate 5-FU-induced mucositis and diarrhea. Methods We investigated the inhibitory effect of CT administration on mucositis and diarrhea, as well as its mechanism, using a mouse model of 5-FU-induced intestinal mucositis. Results CT administration suppressed 5-FU-induced diarrhea and weight loss in the studied mice. After 5-FU administration, the GSH level and the GSH/GSSG ratio in the small intestine mucosal tissue decreased compared to normal control group; but CT administration improved the GSH/GSSG ratio to normal control levels. 5-FU induced ROS production in the basal region of the crypt of the small intestine mucosal tissue, which was inhibited by CT. CT did not affect the antitumor effect of 5-FU. Conclusions CT administration suppressed intestinal mucositis and diarrhea in a mouse model. This finding might be associated with the antioxidant characteristics of CT, including the improved rate of GSH redox and the reduced rate of ROS production in the small intestine mucosal tissue. CT might be a suitable candidate for the treatment of gastrointestinal mucositis associated with chemotherapy.

2021 ◽  
Author(s):  
Junya Yoneda ◽  
Sachiko Nishikawa ◽  
Shigekazu Kurihara

Abstract Background Chemotherapy is frequently used in cancer treatment; however, it may cause adverse events, which must be managed. Reactive oxygen species (ROS) have been reported to be involved in the induction of intestinal mucositis and diarrhea, which are common side effects of treatment with fluoropyrimidine 5-fluorouracil (5-FU). Our previous studies have shown that oral administration of cystine and theanine (CT) increases glutathione (GSH) production in vivo. In the present study, we hypothesized that CT might inhibit oxidative stress, including the overproduction of ROS, and attenuate 5-FU-induced mucositis and diarrhea. Methods We investigated the inhibitory effect of CT administration on mucositis and diarrhea, as well as its mechanism, using a mouse model of 5-FU-induced intestinal mucositis. Results CT administration suppressed 5-FU-induced diarrhea and weight loss in the studied mice. After 5-FU administration, the GSH level and the GSH/GSSG ratio in the small intestine mucosal tissue decreased compared to normal control group; but CT administration improved the GSH/GSSG ratio to normal control levels. 5-FU induced ROS production in the basal region of the crypt of the small intestine mucosal tissue, which was inhibited by CT. CT did not affect the antitumor effect of 5-FU. Conclusions CT administration suppressed intestinal mucositis and diarrhea in a mouse model. This finding might be associated with the antioxidant characteristics of CT, including the improved rate of GSH redox and the reduced rate of ROS production in the small intestine mucosal tissue. CT might be a suitable candidate for the treatment of gastrointestinal mucositis associated with chemotherapy.


Acta Naturae ◽  
2018 ◽  
Vol 10 (4) ◽  
pp. 125-128
Author(s):  
V. A. Palikov ◽  
S. S. Terekhov ◽  
Yu. A. Palikova ◽  
O. N. Khokhlova ◽  
V. A. Kazakov ◽  
...  

The development of antidotes to organophosphate poisons is an important aspect of modern pharmacology. Recombinant acetylcholinesterase and butyrylcholinesterase are effective DNA-encoded acceptors of organophosphate poisons and, in particular, pesticides. Here, we present the results of a study on the effectiveness of recombinant butyrylcholinesterase (BChE) in modeling organophosphate poisoning caused by oral administration of paraoxon at a dose of 2 mg / kg. The study showed a high activity of BChE as a protective agent for subchronic anticholinesterase poisoning in an in vivo model. The administration of BChE in a dose of 20 mg / kg allows one to avoid mortality, and also contributed to rapid recovery after model poisoning.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Chongshan Dai ◽  
Xilong Xiao ◽  
Yonglei Yuan ◽  
Gaurav Sharma ◽  
Shusheng Tang

Fulvic acid (FA), a humic substance, has several nutraceutical properties, including anti-inflammation, antimicrobial, and immune regulation abilities. However, systematic safety assessment remains insufficient. In the present study, a battery of toxicological studies was conducted per internationally accepted standards to investigate the genotoxicity and repeated-dose oral toxicity of FA. Sprague-Dawley (SD) rats or ICR mice were used. Compared to the control group, there were no significant changes (all p > 0.05 ) in all FA treatment groups in the bacterial reverse mutation test, in vitro mammalian chromosome aberration test, in vivo sperm shape abnormality assay, and in vivo mouse micronucleus assay. The acute toxicity test showed that no mortality or toxic effect was observed following oral administration of the maximum dose of 5,000 mg/kg BW/day to mice or rats. A 60-day subchronic study was conducted at 0 (control), 200, 1,000, and 5,000 mg/kg/day. Compared to the control group, there were no significant changes (all p > 0.05 ) in the body weights, feed consumption, clinical signs, hematology, clinical chemistry, organ weights, or histopathology examinations. In conclusion, the no-observed-adverse-effect-level (NOAEL) of FA supplementation from the 60-day study was determined to be 5,000 mg/kg body weight/day, the highest dose tested. Our findings suggest that the oral administration of FA may have higher safety.


2020 ◽  
Vol 2020 ◽  
pp. 1-7 ◽  
Author(s):  
Guifeng Wang ◽  
Ning Ma ◽  
Feng He ◽  
Shosuke Kawanishi ◽  
Hatasu Kobayashi ◽  
...  

Taurine (2-aminoethane-sulfonic acid) is a type of amino acids and has numerous physiological and therapeutic functions, including anti-inflammation. However, there are few studies on the anticancer action of taurine. Our previous studies have demonstrated that taurine exhibits an apoptosis-inducing effect on human nasopharyngeal carcinoma cells in vitro. In this study, we have investigated whether taurine has an anticancer effect, using azoxymethane (AOM)/sulfate sodium (DSS)- induced mouse model for colon carcinogenesis. All mice, except those in control group, received a single intraperitoneal injection of AOM and DSS in the drinking water for 7 days twice, with 1-week interval. After the first DSS treatment, mice were given distilled water (model group) or taurine in the drinking water (taurine group) ad libitum. No tumor was observed in the control group. Taurine significantly suppressed AOM+DSS-induced tumor formation. Histopathological examination revealed AOM/DSS treatment induced colon cancer in all mice (8/8, 100%), and taurine significantly inhibited the progression of colon cancer (4/9, 44.4%). Taurine significantly attenuated cell proliferation in cancer tissues detected by Ki-67 staining. Taurine significantly increased the levels of an apoptosis marker cleaved caspase-9 and tumor suppressor protein PTEN. This is the first study that demonstrated that taurine significantly reduced carcinogenicity in vivo using AOM/DSS-induced colon cancer mouse model.


2017 ◽  
Vol 121 (6) ◽  
pp. 480-486 ◽  
Author(s):  
Zhaoyang Liu ◽  
Wenbo Xie ◽  
Mingru Li ◽  
Nan Teng ◽  
Xiao Liang ◽  
...  

Blood ◽  
2011 ◽  
Vol 117 (7) ◽  
pp. 2241-2246 ◽  
Author(s):  
Michael P. Reilly ◽  
Uma Sinha ◽  
Pierrette André ◽  
Scott M. Taylor ◽  
Yvonne Pak ◽  
...  

AbstractHeparin-induced thrombocytopenia (HIT) is a major cause of morbidity and mortality resulting from the associated thrombosis. Extensive studies using our transgenic mouse model of HIT have shown that antibodies reactive with heparin-platelet factor 4 complexes lead to FcγRIIA-mediated platelet activation in vitro as well as thrombocytopenia and thrombosis in vivo. We tested PRT-060318 (PRT318), a novel selective inhibitor of the tyrosine kinase Syk, as an approach to HIT treatment. PRT318 completely inhibited HIT immune complex-induced aggregation of both human and transgenic HIT mouse platelets. Transgenic HIT model mice were treated with KKO, a mouse monoclonal HIT-like antibody, and heparin. The experimental group received orally dosed PRT318, whereas the control group received vehicle. Nadir platelet counts of PRT318-treated mice were significantly higher than those of control mice. When examined with a novel thrombosis visualization technique, mice treated with PRT318 had significantly reduced thrombosis. The Syk inhibitor PRT318 thus prevented both HIT immune complex-induced thrombocytopenia and thrombosis in vivo, demonstrating its activity in HIT.


2010 ◽  
Vol 59 (3) ◽  
pp. 353-359 ◽  
Author(s):  
Abdolreza Movahedi ◽  
David J. Hampson

The anaerobic intestinal spirochaete Brachyspira pilosicoli colonizes the large intestine of humans, and various species of animals and birds, in which it may induce a mild colitis and diarrhoea. The aim of the current study was to evaluate the use of putative oligopeptide-binding proteins of B. pilosicoli as vaccine components. A partial genome sequence of B. pilosicoli porcine strain 95/1000 was subjected to bioinformatics analysis, and six genes predicted to encode oligopeptide-binding proteins were selected. Following a PCR-based distribution study of the genes across different strains of the spirochaete, they were amplified from B. pilosicoli human strain WesB and cloned in Escherichia coli. The recombinant histidine-tagged proteins were purified and subjected to in vitro and in vivo immunogenicity analysis. Recombinant products (P-1 and P-3) from two genes that were immunogenic and recognized by sera from pigs that had recovered from B. pilosicoli infections were tested in a mouse model of intestinal spirochaetosis. For each recombinant protein, groups of 12 C3H/HeJ mice were vaccinated subcutaneously with 100 μg protein emulsified in Freund's incomplete adjuvant, twice with a 2 week interval. Two weeks later the vaccinated and non-vaccinated control animals were challenged orally with B. pilosicoli strain WesB. Both proteins induced systemic and local colonic IgG antibody responses, and, following experimental infection, the cumulative number of colonization days was significantly (P<0.001) less in both groups of vaccinated mice compared to the control mice. There were significantly (P=0.012) fewer mice colonized in the group vaccinated with P-1 than in the non-vaccinated control group. The results suggest that oligopeptide-binding proteins may have potential for use as components of vaccines for B. pilosicoli.


2021 ◽  
Author(s):  
Anvar Soleimani ◽  
Farshad Mirzavi ◽  
Sara Nikoofal sahlabadi ◽  
Amin reza Nikpoor ◽  
Bita Taghizadeh ◽  
...  

Abstract Background Blocking CD73 ectonucleotidase has been proposed as a potential therapeutic approach for cancer treatment. The purpose of the present study was to investigate the antitumor effect of a novel EGFR-Targeted liposomal CD73 siRNA formulation in combination therapy with Doxil in the 4T1 mouse model. Methods CD73 siRNA was encapsulated into nanoliposomes by the ethanol injection method. After preparation, characterization, morphology, and stability evaluation of formulations, the toxicity was measured by MTT assay. Uptake assay and efficiency of the liposomal formulations were investigated on the 4T1 cell line. The liposomal formulation containing CD73 siRNA was targeted with GE11 peptide for in vivo evaluations. Antitumor activity of prepared formulations in combination with Doxil was studied in mice bearing 4T1 metastatic breast cancer cells. Finally, the antitumor efficacy of the formulation in concomitant treatment with Doxil was evaluated in a mouse model of breast cancer. Results The size of prepared liposomal formulations at N/P=16 for the liposomal CD73 siRNA and GE11-lipo CD73 siRNA groups were 89 nm ± 4.4 and 95 nm ± 6.6, respectively. The nanoparticle’s PDI was less than 0.3 and their surface charge was below 10 mV. The results demonstrated that N/P=16 yielded the best encapsulation efficiency which was 94% ± 3. 3. AFM results showed that the liposomes were spherical in shape and were less than 100 nm in size. The results of the MTT assay showed significant toxicity of the liposomes containing CD73 siRNA during the 48-hour cell culture. Real-time PCR and flow cytometry results showed that liposomes containing CD73 siRNA could effectively downregulate CD73 expression. Liposomal formulations were able to significantly downregulate CD73 gene expression, in vivo. However, CD73 downregulation efficiency was significantly higher for targeted form in comparison with non-targeted formulation (P-value <0.01). The combination showed maximum tumor growth delay with remarkable survival improvement compared to the control group. Studying the immune responses in the treatment groups which received doxorubicin, showed decreased number of lymphocytes in the tumor environment. However, this decrease was lower in the combination therapy group. Finally, our results clearly showed that CD73 downregulation increases the activity of CD8+ lymphocytes (INF-ℽ production) and also significantly decreases the Foxp3 in the CD25+ lymphocytes compared to the control group. Conclusion GE11-Lipo CD73 siRNA formulation can efficiently knock down CD73 ectonucleotidase. Also, the efficacy of Doxil is significantly enhanced via the downregulation of CD73 ectonucleotidase.


Author(s):  
Danielle A. Nicklas ◽  
Emily C. Maggioncalda ◽  
Elizabeth Story-Roller ◽  
Benjamin Eichelman ◽  
Chavis Tabor ◽  
...  

The incidence of nontuberculous mycobacterial diseases in the US is rising and has surpassed tuberculosis. Most notable among the nontuberculous mycobacteria is Mycobacteroides abscessus , an emerging environmental opportunistic pathogen capable of causing chronic infections. M. abscessus disease is difficult to treat and the current treatment recommendations include repurposed antibiotics, several of which are associated with undesirable side effects. In this study, we have evaluated the activity of omadacycline, a new tetracycline derivative, against M. abscessus using in vitro and in vivo approaches. Omadacycline exhibited an MIC 90 of 0.5 μg/ml against a panel of 32 contemporary M. abscessus clinical isolates several of which were resistant to antibiotics that are commonly used for treatment of M. abscessus disease. Omadacycline when combined with clarithromycin, azithromycin, cefdinir, rifabutin or linezolid also exhibited synergism against several M. abscessus strains and did not exhibit antagonism when combined with an additional nine antibiotics also commonly considered to treat M. abscessus disease. Concentration-dependent activity of omadacycline was observed in time-kill assessments. Efficacy of omadacycline was evaluated in a mouse model of lung infection against four M. abscessus strains. A dose equivalent to the 300 mg standard oral human dose was used. Compared to the untreated control group, within four weeks of treatment, 1 to 3 log 10 fewer M. abscessus colony forming units were observed in the lungs of mice treated with omadacycline. Treatment outcome was biphasic, with bactericidal activity observed after the first two weeks of treatment against all four M. abscessus strains.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ryutaro Furukawa ◽  
Masahiro Kitabatake ◽  
Noriko Ouji-Sageshima ◽  
Yuki Suzuki ◽  
Akiyo Nakano ◽  
...  

AbstractCoronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has rapidly spread across the world. Inactivating the virus in saliva and the oral cavity represents a reasonable approach to prevent human-to-human transmission because the virus is easily transmitted through oral routes by dispersed saliva. Persimmon-derived tannin is a condensed type of tannin that has strong antioxidant and antimicrobial activity. In this study, we investigated the antiviral effects of persimmon-derived tannin against SARS-CoV-2 in both in vitro and in vivo models. We found that persimmon-derived tannin suppressed SARS-CoV-2 titers measured by plaque assay in vitro in a dose- and time-dependent manner. We then created a Syrian hamster model by inoculating SARS-CoV-2 into hamsters’ mouths. Oral administration of persimmon-derived tannin dissolved in carboxymethyl cellulose before virus inoculation dramatically reduced the severity of pneumonia with lower virus titers compared with a control group inoculated with carboxymethyl cellulose alone. In addition, pre-administration of tannin to uninfected hamsters reduced hamster-to-hamster transmission of SARS-CoV-2 from a cohoused, infected donor cage mate. These data suggest that oral administration of persimmon-derived tannin may help reduce the severity of SARS-CoV-2 infection and transmission of the virus.


Sign in / Sign up

Export Citation Format

Share Document