scholarly journals Evaluation of recombinant Brachyspira pilosicoli oligopeptide-binding proteins as vaccine candidates in a mouse model of intestinal spirochaetosis

2010 ◽  
Vol 59 (3) ◽  
pp. 353-359 ◽  
Author(s):  
Abdolreza Movahedi ◽  
David J. Hampson

The anaerobic intestinal spirochaete Brachyspira pilosicoli colonizes the large intestine of humans, and various species of animals and birds, in which it may induce a mild colitis and diarrhoea. The aim of the current study was to evaluate the use of putative oligopeptide-binding proteins of B. pilosicoli as vaccine components. A partial genome sequence of B. pilosicoli porcine strain 95/1000 was subjected to bioinformatics analysis, and six genes predicted to encode oligopeptide-binding proteins were selected. Following a PCR-based distribution study of the genes across different strains of the spirochaete, they were amplified from B. pilosicoli human strain WesB and cloned in Escherichia coli. The recombinant histidine-tagged proteins were purified and subjected to in vitro and in vivo immunogenicity analysis. Recombinant products (P-1 and P-3) from two genes that were immunogenic and recognized by sera from pigs that had recovered from B. pilosicoli infections were tested in a mouse model of intestinal spirochaetosis. For each recombinant protein, groups of 12 C3H/HeJ mice were vaccinated subcutaneously with 100 μg protein emulsified in Freund's incomplete adjuvant, twice with a 2 week interval. Two weeks later the vaccinated and non-vaccinated control animals were challenged orally with B. pilosicoli strain WesB. Both proteins induced systemic and local colonic IgG antibody responses, and, following experimental infection, the cumulative number of colonization days was significantly (P<0.001) less in both groups of vaccinated mice compared to the control mice. There were significantly (P=0.012) fewer mice colonized in the group vaccinated with P-1 than in the non-vaccinated control group. The results suggest that oligopeptide-binding proteins may have potential for use as components of vaccines for B. pilosicoli.

2020 ◽  
Vol 2020 ◽  
pp. 1-7 ◽  
Author(s):  
Guifeng Wang ◽  
Ning Ma ◽  
Feng He ◽  
Shosuke Kawanishi ◽  
Hatasu Kobayashi ◽  
...  

Taurine (2-aminoethane-sulfonic acid) is a type of amino acids and has numerous physiological and therapeutic functions, including anti-inflammation. However, there are few studies on the anticancer action of taurine. Our previous studies have demonstrated that taurine exhibits an apoptosis-inducing effect on human nasopharyngeal carcinoma cells in vitro. In this study, we have investigated whether taurine has an anticancer effect, using azoxymethane (AOM)/sulfate sodium (DSS)- induced mouse model for colon carcinogenesis. All mice, except those in control group, received a single intraperitoneal injection of AOM and DSS in the drinking water for 7 days twice, with 1-week interval. After the first DSS treatment, mice were given distilled water (model group) or taurine in the drinking water (taurine group) ad libitum. No tumor was observed in the control group. Taurine significantly suppressed AOM+DSS-induced tumor formation. Histopathological examination revealed AOM/DSS treatment induced colon cancer in all mice (8/8, 100%), and taurine significantly inhibited the progression of colon cancer (4/9, 44.4%). Taurine significantly attenuated cell proliferation in cancer tissues detected by Ki-67 staining. Taurine significantly increased the levels of an apoptosis marker cleaved caspase-9 and tumor suppressor protein PTEN. This is the first study that demonstrated that taurine significantly reduced carcinogenicity in vivo using AOM/DSS-induced colon cancer mouse model.


2003 ◽  
Vol 71 (4) ◽  
pp. 2292-2295 ◽  
Author(s):  
Eric Brouillette ◽  
Brian G. Talbot ◽  
François Malouin

ABSTRACT The fibronectin-binding proteins (FnBPs) of Staphylococcus aureus are believed to be implicated in the pathogen's adherence to and colonization of bovine mammary glands, thus leading to infectious mastitis. In vitro studies have shown that FnBPs help the adhesion of the pathogen to bovine mammary epithelial cells. However, the importance of FnBPs for the infection of mammary glands has never been directly established in vivo. In this study with a mouse model of mastitis, the presence of FnBPs on the surface of S. aureus increased the capacity of the bacterium to colonize mammary glands under suckling pressure compared to that of a mutant lacking FnBPs.


Author(s):  
Danielle A. Nicklas ◽  
Emily C. Maggioncalda ◽  
Elizabeth Story-Roller ◽  
Benjamin Eichelman ◽  
Chavis Tabor ◽  
...  

The incidence of nontuberculous mycobacterial diseases in the US is rising and has surpassed tuberculosis. Most notable among the nontuberculous mycobacteria is Mycobacteroides abscessus , an emerging environmental opportunistic pathogen capable of causing chronic infections. M. abscessus disease is difficult to treat and the current treatment recommendations include repurposed antibiotics, several of which are associated with undesirable side effects. In this study, we have evaluated the activity of omadacycline, a new tetracycline derivative, against M. abscessus using in vitro and in vivo approaches. Omadacycline exhibited an MIC 90 of 0.5 μg/ml against a panel of 32 contemporary M. abscessus clinical isolates several of which were resistant to antibiotics that are commonly used for treatment of M. abscessus disease. Omadacycline when combined with clarithromycin, azithromycin, cefdinir, rifabutin or linezolid also exhibited synergism against several M. abscessus strains and did not exhibit antagonism when combined with an additional nine antibiotics also commonly considered to treat M. abscessus disease. Concentration-dependent activity of omadacycline was observed in time-kill assessments. Efficacy of omadacycline was evaluated in a mouse model of lung infection against four M. abscessus strains. A dose equivalent to the 300 mg standard oral human dose was used. Compared to the untreated control group, within four weeks of treatment, 1 to 3 log 10 fewer M. abscessus colony forming units were observed in the lungs of mice treated with omadacycline. Treatment outcome was biphasic, with bactericidal activity observed after the first two weeks of treatment against all four M. abscessus strains.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 1558-1558 ◽  
Author(s):  
Shouyun Li ◽  
Shuang Liu ◽  
Shuying Chen ◽  
Yirui Chen ◽  
Ying Wang ◽  
...  

Abstract Introduction: TBLR1-RARα is the tenth fusion gene of acute promyelocytic leukemia (APL) first identified in a rare case of APL with t(3;17)(q26;q21) chromosomal translocation in our previous study. The characteristics of its basic structure and functions had been clarified in our previous study. In this study, we successfully established a novel TBLR1-RARα leukemia mouse model (TR mouse) which fully recapitulated the most relevant features of human APLs. The therapeutic effects of retinoic acid (ATRA), arsenic trioxide (As2O3), cytarabine (Ara-C) and histone deacetylase inhibitors (HDACi) on TR mice were examined. The differentially expressed genes (DEGs) between TR mice and normal mice were compared to explore the possible mechanisms and better therapeutic targets for this kind of APL. Methods: pMSCV-TBLR1-RARα-Flag-IRES-GFP (MSCV-TR) and pMSCV-IRES-GFP (vehicle) retroviral plasmids were constructed and transfected 293T packaging cells to produce retroviruses. Lin- cells from C57BL/6 mice bone marrow were purified and infected with MSCV-TR and vehicle retroviral supernatant. For in vitro assay, the GFP+ lin- cells sorted and incubated with or without different concentrations of ATRA were analyzed for the differentiation and proliferation capacity by cell morphology, myeloid markers (CD11b and GR-1) and colony formation assay. For the in vivo experiment, GFP+ lin- cells transfected with indicated retroviral vectors were injected intravenously to lethally irradiated C57BL/6 mice to establish an APL mouse model. Cell surface markers were analyzed by flow cytometry. In treatment assays, GFP+ spleen cells from TR leukemia mice were injected intravenously into recipient mice. The mice were randomly separated into groups and received different treatment with ATRA, As2O3, As2O3 in combination with ATRA, Ara-C, Ara-C in combination with ATRA, chidamide and NL101, respectively. The percentage of GFP+ cells in peripheral blood and body weight were measured dynamically. The survival time of every group was recorded and compared. RNA-seq assay was used to identify DEGs between TR mice and normal mice. Results: In vitro assays indicated that TBLR1-RARα could either block the differentiation of HSCs at a relatively early stage or enhanced the clonogenic potential of cells. The TBLR1-RARα leukemia mouse model was successfully established. During the ten-month observational period, 3 out of 15 mice transplanted with TBLR1-RARα expressing cells developed an APL-like disease. Development of leukemia was not observed in any of the mice in control group. All the leukemia mice had a body weight loss as well as splenomegaly and hepatomegaly. The phenotype analysis revealed that the progenitor markers Sca-1, CD34 and C-kit were positive, the myeloid lineage markers Gr-1 and CD11b were also positive, erythroid lineage marker Ter119 was weekly positive, but the lymphatic lineage marker B220, CD3,CD4 and CD8 were all negative. TR mice treated with 1.5-2.5 mg/kg ATRA alone or together with 2.0 mg/kg As2O3 didn't survive longer than that of control group, although in vitro differentiation experiment showed that the leukemia cells were sensitive to ATRA. Leukemic mice receiving Ara-C treatment had a much longer survive time. Surprisingly, HDAC inhibitors (12.5 and 25 mg/kg chidamide and 30 mg/kg NL-101) could significantly prolong the survival time of TR mice. Thousands of DEGs had been identified between TR mice and wild type mice, which were widely involved in multiple pathways and participated in various biological functions. Conclusion: The TBLR1-RARα leukemia mouse model was successfully established for the first time, and its main characteristics were clarified. Although the leukemia cells were sensitive to ATRA in vitro, TR mice didn't benefit from ATRA or As2O3 treatment in vivo. Besides Ara-C, HDAC inhibitors, such as chidamide and NL-101 exhibited potency therapeutic values for TR mice, which provided a new strategy for this kind of refractory APL. What' more, lots of genes that might be related with the process of leukemogenesis and new therapeutic targets for TR leukemia were identified. This model would serve as a versatile tool to study the mechanisms of leukemogenesis and help to design better strategies for APLs in further studies. Disclosures No relevant conflicts of interest to declare.


Microbiology ◽  
2010 ◽  
Vol 156 (1) ◽  
pp. 191-197 ◽  
Author(s):  
Ram Naresh ◽  
David J. Hampson

The anaerobic intestinal spirochaete Brachyspira pilosicoli colonizes the large intestine of various species, including humans. In the colon this spirochaete can penetrate the overlying mucus layer, attach by one cell end to the underlying enterocytes, and initiate localized colitis and diarrhoea. The aim of this study was to investigate whether, as part of the colonization process, B. pilosicoli is attracted to mucin. Fifteen B. pilosicoli strains isolated from humans, pigs, chickens and dogs, and a control strain of Brachyspira hyodysenteriae, were analysed for their ability to enter solutions of hog gastric mucin in an in vitro capillary tube assay. No significant attraction was detected with 1 % mucin, but some strains started to enter a 2 % solution, and attraction then increased with increasing concentrations to peak at around 6–8 % mucin. A similar increase was seen with B. hyodysenteriae, although this activity peaked at 6 % mucin and then declined, suggesting that the two species have different affinities for mucin. These mucin concentrations were much higher than those used in previous experimental studies with Brachyspira species. The viscosities of the 6–8 % mucin solutions were around 7–12 mPa s, which were similar to the measured viscosities of the mucus layer overlying the epithelium in the caecum and colon of experimental pigs. The strains varied in their motility, as assessed by their ability to enter tubes containing chemotaxis buffer, but there was no significant relationship between this motility and the extent of their ability to enter the mucin solutions. Different strains also had different propensities to enter the mucin solutions, but there were no consistent differences according to the host species of origin. B. pilosicoli strain 95/1000 was attracted towards a solution of d-serine, suggesting that chemotaxis was involved in the attraction to mucin; however, 95/1000 was also attracted to viscous solutions of polyvinylpyrrolidone (PVP), in a manner mirroring the response to mucin, and hence suggesting the involvement of viscotaxis in the attraction to mucin. B. hyodysenteriae B204 showed a similar viscotaxis to PVP. Further studies are required to determine whether the in vitro interaction of a given strain with mucin is a useful indicator of its in vivo colonization ability, and hence could be used as a potential marker for virulence.


2021 ◽  
Author(s):  
Yi Yan ◽  
Chengyu Xiang ◽  
Dingguo Zhang

Abstract PURPOSETo explore the protective mechanism of fasudil,a Rho kinase inhibitor, on acute cardiac injury induced by adriamycin(ADR).METHODSIn vitro investigations on H9C2 cell line, as well as an in vivo study in a mouse model of ADR-induced acute cardiomyopathy, were performed. In vitro, H9C2 cells were treated with fasudil for 30mins then incubated with ADR for 24 hours. Cells were collected for immunohistochemistry and western blot study, respectively. In vivo, C57BL6 mice were randomly divided into the following four groups: ①ADR group;②low-dose fasudil ( ADR+L);③high-dose fasudil ( ADR+H); and ④control group(CON). Animals were injected i.p 20 mg/kg ADR once in group①~③. And animals were injected i.p fasudil (2 or 10 mg/kg/day ) daily once for six times in group ②and ③,respectively. Blood samples and heart tissues were collected for assays.RESULTSIn vitro, fasudil treatment ameliorated ADR-induced immunofluorescence reaction of 8-OHdG, decreased the expression of TUNEL cells and protein of Bax、Caspase-3 and p53,and increased the expression of protein of Bcl-2 and SIRT 1. In the mouse model, administration of fasudil significantly ameliorated ADR-induced cardiac damage, suppressed cell apoptosis and senescence, ameliorated redox imbalance and DNA damage.CONCLUSIONFasudil has the protective effect on adriamycin induced acute cardiotoxicity, which partially attributed to its antioxidant, anti-senescence, and anti-apoptotic effects of inhibiting the RhoA/Rho kinase signaling pathway.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 887-887
Author(s):  
Mirza Suljagic ◽  
Pablo G Longo ◽  
Luca Laurenti ◽  
Dimitar G Efremov

Abstract Abstract 887 CLL B-cells depend on various signals from the microenvironment for survival and proliferation. Among these, antigenic stimuli that are propagated through the B-cell receptor (BCR) are considered particularly important for the development and progression of CLL, suggesting that the BCR signaling pathway could be an important target for therapeutic intervention. We have previously characterized some of the critical components of the signaling pathway downstream of the BCR in CLL B cells and identified the protein tyrosine kinase Syk as a promising therapeutic target. In a recent study we showed that CLL B-cells frequently have increased basal/constitutive Syk activity and are moderately sensitive to the cytotoxic effect of the selective Syk inhibitor R406 [Gobessi et al, Leukemia 2009]. More importantly, the survival signal induced by sustained BCR engagement was completely abolished by R406, suggesting that this compound may exert an even greater effect in vivo by inhibiting antigen-dependent Syk activation. We have now tested this possibility in the Eμ-TCL1 transgenic mouse model of CLL. Aged Eμ-TCL1 mice develop CD5+ B-cell leukemias that, similar to aggressive human CLL, show features of an antigen-driven process, including expression of stereotyped BCRs and reactivity with common autoantigens and microbial agents [Yan et al, Proc Natl Acad Sci USA 2006]. For our experiments we used a TCL1 leukemia (TCL1-002) that does not grow in vitro, but can be propagated in syngeneic recipients in vivo. TCL1-002 cells express an unmutated stereotyped BCR encoded by the VH12/VK4 combination, which reacts with phosphatidylcholine, an autoantigen exposed on the surface of senescent erythrocytes. In vitro experiments showed that R406 is not cytotoxic for TCL1-002 cells, although it completely inhibited both the basal and BCR-induced activation of signaling pathways downstream of Syk. The absence of a direct cytotoxic effect provided a unique opportunity to investigate whether inhibition of BCR signaling will affect leukemia growth in vivo. For this purpose, 1×107 TCL1-002 cells were injected intraperitoneally in 18 syngeneic mouse recipients. Three days later treatment was started in 8 mice with R788, which is the water-soluble prodrug of R406, at a daily dose of 80mg/kg during 18 consecutive days. Because of the rapid clearance of the drug (serum half-life <2 hours) R788 was administered in 3 divided doses at 4 hour intervals. Two weeks after the end of treatment leukemia developed in all mice from the control group (median WBC counts 131×106/ml, range 12-300×106/ml), whereas all R788-treated mice showed normal WBC numbers (median 6×106/ml, range 3-8×106/ml, P<0.001). Three weeks later all mice in the control group had died (median survival 46 days), whereas all mice in the R788 group were still alive and only two of them had detectable leukemic cells. R788 also showed some efficacy in the treatment of mice with overt TCL1-002 leukemias (WBC >50×106/ml). Whereas all mice from the control group (n=9) died between 6 and 18 days from the beginning of therapy, 4 out of 9 mice from the R788 group survived for more than 33 days. The mechanism of R788 activity was primarily related to inhibition of leukemic cell proliferation, as evidenced by a substantial decrease in the percentage of Ki67-positive cells after 7 days of treatment (30% before, 5% after therapy, P<0.001). To investigate whether R788 will also be effective against other TCL1 tumors we treated five TCL1 mice with preleukemic mono- or oligoclonal B-cell expansions during a four week period. R788 reduced the percentage of CD5+/B220+ cells in 2 cases, whereas in 2 other cases the percentage increased. Interestingly, the pattern of clonal Ig gene rearrangements changed during therapy, suggesting that only certain TCL1 clones are sensitive to R788 treatment. In summary, this study shows that R788 can effectively inhibit the growth of certain TCL1 tumors and provides the first in vivo experimental evidence suggesting that inhibition of antigen-dependent BCR signaling could be an effective therapeutic approach in CLL. Disclosures: No relevant conflicts of interest to declare.


2021 ◽  
Vol 12 ◽  
Author(s):  
Byeong Seob Oh ◽  
Won Jung Choi ◽  
Ji-Sun Kim ◽  
Seoung Woo Ryu ◽  
Seung Yeob Yu ◽  
...  

The gut microbiota (GM) has been shown to be closely associated with the development of colorectal cancer (CRC). However, the involvement of GM is CRC has mainly been demonstrated by metagenomic profiling studies showing the compositional difference between the GM of healthy individuals and that of CRC patients and not by directly studying isolated gut microbes. Thus, to discover novel gut microbes involved in CRC, we isolated the GM from the feces of healthy individuals and evaluated its anti-CRC activity in vitro and in vivo. After GM isolation, cell-free supernatants (CFSs) were prepared from the isolated gut microorganisms to efficiently screen a large amount of the GM for anti-proliferative ability in vitro. Our results showed that the CFSs of 21 GM isolates had anti-proliferative activity against human colon cancer HCT 116 cells. Of these 21 GM isolates, GM07 was chosen for additional study because it had the highest anti-cancer activity against mouse colon cancer CT 26 cells in vitro and was further evaluated in a CT 26 allograft mouse model in vivo. GM07 was identified as Odoribacter splanchnicus through phylogenetic analysis based on 16S rRNA gene sequencing. Further investigation determined that the CFS of O. splanchnicus (OsCFS) induced anti-proliferative activity via apoptosis, but not cell cycle arrest. Moreover, GC/MS analysis suggested that the putative active molecule in OsCFS is malic acid. Finally, in the CRC mouse model, peri-tumoral injection of OsCFS significantly decreased CRC formation, compared to the control group. Altogether, these findings will provide valuable information for the discovery of potential probiotic candidates that inhibit CRC.


1990 ◽  
Vol 29 (03) ◽  
pp. 120-124
Author(s):  
R. P. Baum ◽  
E. Rohrbach ◽  
G. Hör ◽  
B. Kornhuber ◽  
E. Busse

The effect of triiodothyronine (T3) on the differentiation of cultured neuroblastoma (NB) cells was studied after 9 days of treatment with a dose of 10-4 M/106 cells per day. Using phase contrast microscopy, 30-50% of NB cells showed formation of neurites as a morphological sign of cellular differentiation. The initial rise of the mitosis rate was followed by a plateau. Changes in cyclic nucleotide content, in the triphosphates and in the activity of the enzyme ornithine decarboxylase (ODC) were assessed in 2 human and 2 murine cell lines to serve as biochemical parameters of the cell differentiation induced by T3. Whereas the cAMP level increased significantly (3 to 7 fold compared with its initial value), the cGMP value dropped to 30 to 50% of that of the control group. ATP and GTP increased about 200%, the ODC showed a decrease of about 50%. The present studies show a biphasic effect of T3 on neuroblastoma cells: the initial rise of mitotic activity is followed by increased cell differentiation starting from day 4 of the treatment.


2020 ◽  
Author(s):  
K. Zerrouki ◽  
N. Djebli ◽  
L. Gadouche ◽  
I. Erdogan Orhan ◽  
F. SezerSenol Deniz ◽  
...  

Nowadays, because of the industrialization, a lot of contaminant were available ; the consequences of this availability are apparition of diseases including neurodegeneration. Neurodegenerative diseases of the human brain comprise a variety of disorders that affect an increasing percentage of the population. This study is based on the effect of the Boswellic resin, which is from a medicinal plant and known for its antioxidant effects on nerve cell damage. The objective of this work was to evaluate the in vitro and in vivo effects of the Boswellic resin on anticholinesterase activity and Alzheimer’s disease (AD) induced by D-galactose and aluminum tetrachloride in Swiss mice. Chemical composition of the resin essential oil was identified by the CG-MS analysis. The antioxidant activity was also assessed by the DMPD and metal chelation methods. In order to understand the mechanism of memory improvement, the acetylcholinesterase, AChE, and butyrylcholinesterase, BChE, inhibitory assays were performed. In vivo part of the study was achieved on Swiss mice divided into four groups: control, AD model, treated AD, and treated control group. The identification of chemical composition by CG-MS reach the 89.67% of the total extract compounds presented some very important molecules (p-Cymene, n-Octyl acetate, α-Pinene…). The present study proves that Boswellic resin improves memory and learning in treated Alzheimer’s group, modulates the oxidative stress and be involved in the protective effect against amyloid deposition and neurodegeneration, and stimulates the immune system in mice’s brain.


Sign in / Sign up

Export Citation Format

Share Document