scholarly journals Five gene signatures were identified in the prediction of overall survival in resectable pancreatic cancer

BMC Surgery ◽  
2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Chao Wu ◽  
Zuowei Wu ◽  
Bole Tian

Abstract Background Although genes have been previously detected in pancreatic cancer (PC), aberrant genes that play roles in resectable pancreatic cancer should be further assessed. Methods Messenger RNA samples and clinicopathological data corrected with PC were downloaded from The Cancer Genome Atlas (TCGA). Resectable PC patients were randomly divided into a primary set and a validation set. Univariable Cox regression analysis, lasso-penalized Cox regression analysis, and multivariable Cox analysis were implemented to distinguish survival-related genes (SRGs). A risk score based on the SRGs was calculated by univariable Cox regression analysis. A genomic-clinical nomogram was established by integrating the risk score and clinicopathological data to predict overall survival (OS) in resectable PC. Results Five survival-related genes (AADAC, DEF8, HIST1H1C, MET, and CHFR) were significantly correlated with OS in resectable PC. The resectable PC patients, based on risk score, were sorted into a high-risk group that showed considerably unfavorable OS (p < 0.001) than the low-risk group, in both the primary set and the validation set. The concordance index (C-index) was calculated to evaluate the predictive performance of the nomogram were respectively in the primary set [0.696 (0.608–0.784)] and the validation set [0.682 (0.606–0.758)]. Additionally, gene set enrichment Analysis discovered several meaningful enriched pathways. Conclusion Our study identified five prognostic gene biomarkers for OS prediction and which facilitate postoperative molecular target therapy for the resectable PC, especially the nomic-clinical nomogram which may be used as an effective model for the postoperative OS evaluation and also an optimal therapeutic tool for the resectable PC.

2021 ◽  
Author(s):  
Fei Li ◽  
Dongcen Ge ◽  
Shu-lan Sun

Abstract Background. Ferroptosis is a newly discovered form of cell death characterized by iron-dependent lipid peroxidation. The aim of this study is to investigate the relationship between ferroptosis and the prognosis of lung adenocarcinoma (LUAD).Methods. RNA-seq data was collected from the LUAD dataset of The Cancer Genome Altas (TCGA) database. We used ferroptosis-related genes as the basis, and identify the differential expression genes (DEGs) between cancer and paracancer. The univariate Cox regression analysis were used to screen the prognostic-related genes. We divided the patients into training and validation sets. Then, we screened out key genes and built a 5 genes prognostic prediction model by the applications of the least absolute shrinkage and selection operator (LASSO) 10-fold cross-validation and the multi-variate Cox regression analysis. We divided the cases by the median value of risk score and validated this model in the validation set. Meanwhile, we analyzed the somatic mutations, and estimated the score of immune infiltration in the high- and low-risk groups, as well as performed functional enrichment analysis of DEGs.Results. The result revealed that the high-risk score triggered the worse prognosis. The maximum area under curve (AUC) of the training set and the validation set of in this study was 0.7 and 0.69. Moreover, we integrated the age, gender, and tumor stage to construct the composite nomogram. The charts indicated that the AUC of cases with survival time of 1, 3 and 5 years are 0.698, 0.71 and 0.73. In addition, the mutation frequency of patients in the high-risk group was higher than that in the low-risk group. Simultaneously, DEGs were mainly enriched in ferroptosis-related pathways by analyzing the functional results.Conclusion. This study constructed a novel LUAD prognosis prediction model base on 5 ferroptosis-related genes, which can provide a prognostic evaluation tool for the clinical therapeutic decision.


BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Jinzhi Lai ◽  
Hainan Yang ◽  
Tianwen Xu

Abstract Background Malignant mesothelioma (MM) is a relatively rare and highly lethal tumor with few treatment options. Thus, it is important to identify prognostic markers that can help clinicians diagnose mesothelioma earlier and assess disease activity more accurately. Alternative splicing (AS) events have been recognized as critical signatures for tumor diagnosis and treatment in multiple cancers, including MM. Methods We systematically examined the AS events and clinical information of 83 MM samples from TCGA database. Univariate Cox regression analysis was used to identify AS events associated with overall survival. LASSO analyses followed by multivariate Cox regression analyses were conducted to construct the prognostic signatures and assess the accuracy of these prognostic signatures by receiver operating characteristic (ROC) curve and Kaplan–Meier survival analyses. The ImmuCellAI and ssGSEA algorithms were used to assess the degrees of immune cell infiltration in MM samples. The survival-related splicing regulatory network was established based on the correlation between survival-related AS events and splicing factors (SFs). Results A total of 3976 AS events associated with overall survival were identified by univariate Cox regression analysis, and ES events accounted for the greatest proportion. We constructed prognostic signatures based on survival-related AS events. The prognostic signatures proved to be an efficient predictor with an area under the curve (AUC) greater than 0.9. Additionally, the risk score based on 6 key AS events proved to be an independent prognostic factor, and a nomogram composed of 6 key AS events was established. We found that the risk score was significantly decreased in patients with the epithelioid subtype. In addition, unsupervised clustering clearly showed that the risk score was associated with immune cell infiltration. The abundances of cytotoxic T (Tc) cells, natural killer (NK) cells and T-helper 17 (Th17) cells were higher in the high-risk group, whereas the abundances of induced regulatory T (iTreg) cells were lower in the high-risk group. Finally, we identified 3 SFs (HSPB1, INTS1 and LUC7L2) that were significantly associated with MM patient survival and then constructed a regulatory network between the 3 SFs and survival-related AS to reveal potential regulatory mechanisms in MM. Conclusion Our study provided a prognostic signature based on 6 key events, representing a better effective tumor-specific diagnostic and prognostic marker than the TNM staging system. AS events that are correlated with the immune system may be potential therapeutic targets for MM.


BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Xuelong Wang ◽  
Bin Zhou ◽  
Yuxin Xia ◽  
Jianxin Zuo ◽  
Yanchao Liu ◽  
...  

Abstract Background DNA methylation alteration is frequently observed in Lung adenocarcinoma (LUAD) and may play important roles in carcinogenesis, diagnosis, and prognosis. Thus, this study aimed to construct a reliable methylation-based nomogram, guiding prognostic classification screening and personalized medicine for LUAD patients. Method The DNA methylation data, gene expression data and corresponding clinical information of lung adenocarcinoma samples were extracted from The Cancer Genome Atlas (TCGA) database. Differentially methylated sites (DMSs) and differentially expressed genes (DEGs) were obtained and then calculated correlation by pearson correlation coefficient. Functional enrichment analysis and Protein-protein interaction network were used to explore the biological roles of aberrant methylation genes. A prognostic risk score model was constructed using univariate Cox and LASSO analysis and was assessed in an independent cohort. A methylation-based nomogram that included the risk score and the clinical risk factors was developed, which was evaluated by concordance index and calibration curves. Result We identified a total of 1362 DMSs corresponding to 471 DEGs with significant negative correlation, including 752 hypermethylation sites and 610 hypomethylation sites. Univariate cox regression analysis showed that 59 DMSs were significantly associated with overall survival. Using LASSO method, we constructed a three-DMSs signature that was independent predictive of prognosis in the training cohort. Patients in high-risk group had a significant shorter overall survival than patients in low-risk group classified by three-DMSs signature (log-rank p = 1.9E-04). Multivariate cox regression analysis proved that the three-DMSs signature was an independent prognostic factor for LUAD in TCGA-LUAD cohort (HR = 2.29, 95%CI: 1.47–3.57, P = 2.36E-04) and GSE56044 cohort (HR = 2.16, 95%CI: 1.19–3.91, P = 0.011). Furthermore, a nomogram, combining the risk score with clinical risk factors, was developed with C-indexes of 0.71 and 0.70 in TCGA-LUAD and GSE56044 respectively. Conclusions The present study established a robust three-DMSs signature for the prediction of overall survival and further developed a nomogram that could be a clinically available guide for personalized treatment of LUAD patients.


2020 ◽  
Author(s):  
Xuelong Wang ◽  
Bin Zhou ◽  
Yuxin Xia ◽  
Jianxin Zuo ◽  
Yanchao Liu ◽  
...  

Abstract Background DNA methylation alteration is frequently observed in Lung adenocarcinoma (LUAD) and may play important roles in carcinogenesis, diagnosis, and prognosis. Thus, this study aimed to construct a reliable methylation-based nomogram, guiding prognostic classification screening and personalized medicine for LUAD patients. Method: The DNA methylation data, gene expression data and corresponding clinical information of lung adenocarcinoma samples were extracted from The Cancer Genome Atlas (TCGA) database. Differentially methylated sites (DMSs) and differentially expressed genes (DEGs) were obtained and then calculated expression correlation by pearson correlation coefficient. Functional enrichment analysis and Protein-protein interaction network were used to explore the biological roles of aberrant methylation genes. A prognostic risk score model was constructed using univariate Cox and LASSO analysis and was assessed in an independent cohort. A methylation-based nomogram that included the risk score and the clinical risk factors was developed, which was evaluated by concordance index and calibration curves. Result We identified a total of 1362 DMSs corresponding to 471 DEGs with significant negative correlation, including 752 hypermethylation sites and 610 hypomethylation sites. Univariate cox regression analysis showed that 59 DMSs were significantly associated with overall survival. Using LASSO method, we constructed a three-DMSs signature that was independent predictive of prognosis in the training cohort. Patients in high-risk group had a significant shorter overall survival than patients in low-risk group classified by three-DMSs signature (log-rank p = 1.9E-04). Multivariate cox regression analysis proved that the three-DMSs signature was an independent prognostic factor for LUAD in TCGA-LUAD cohort (HR = 2.29, 95%CI: 1.47–3.57, P = 2.36E-04) and GSE56044 cohort (HR = 2.16, 95%CI: 1.19–3.91, P = 0.011). Furthermore, a nomogram, combining the risk score with clinical risk factors, was developed with C-indexes of 0.71 and 0.70 in TCGA-LUAD and GSE56044 respectively. Conclusions The present study established a robust three-DMSs signature for the prediction of overall survival and further developed a nomogram that could be a clinically available guide for personalized treatment of LUAD patients.


2021 ◽  
Vol 12 ◽  
Author(s):  
Junyu Huo ◽  
Liqun Wu ◽  
Yunjin Zang

Recently, growing evidence has revealed the significant effect of reprogrammed metabolism on pancreatic cancer in relation to carcinogenesis, progression, and treatment. However, the prognostic value of metabolism-related genes in pancreatic cancer has not been fully revealed. We identified 379 differentially expressed metabolic-related genes (DEMRGs) by comparing 178 pancreatic cancer tissues with 171 normal pancreatic tissues in The Cancer Genome Atlas (TCGA) and the Genotype-Tissue Expression project (GTEx) databases. Then, we used univariate Cox regression analysis together with Lasso regression for constructing a prognostic model consisting of 15 metabolic genes. The unified risk score formula and cutoff value were taken into account to divide patients into two groups: high risk and low risk, with the former exhibiting a worse prognosis compared with the latter. The external validation results of the International Cancer Genome Consortium (IGCC) cohort and the Gene Expression Omnibus (GEO) cohort further confirm the effectiveness of this prognostic model. As shown in the receiver operating characteristic (ROC) curve, the area under curve (AUC) values of the risk score for overall survival (OS), disease-specific survival (DSS), and progression-free survival (PFS) were 0.871, 0.885, and 0.886, respectively. Based on the Gene Set Enrichment Analysis (GSEA), the 15-gene signature can affect some important biological processes and pathways of pancreatic cancer. In addition, the prognostic model was significantly correlated with the tumor immune microenvironment (immune cell infiltration, and immune checkpoint expression, etc.) and clinicopathological features (pathological stage, lymph node, and metastasis, etc.). We also built a nomogram based on three independent prognostic predictors (including individual neoplasm status, lymph node metastasis, and risk score) for the prediction of 1-, 3-, and 5-year OS of pancreatic cancer, which may help to further improve the treatment strategy of pancreatic cancer.


2022 ◽  
Vol 11 ◽  
Author(s):  
Yue Wang ◽  
Bao Xuan Li ◽  
Xiang Li

Ovarian cancer (OC) is a highly heterogeneous disease with different cellular origins reported; thus, precise prognostic strategies and effective new therapies are urgently needed for patients with OC. A growing number of studies have shown that most malignancies have intensive angiogenesis and rapid growth. Therefore, angiogenesis plays an important role in the development of tumor metastasis. However, the prognostic value of angiogenesis-related genes (ARGs) in OC remains to be further elucidated. In this study, the expression data and corresponding clinical data from patients with OC and normal control samples were downloaded with UCSC XENA. A total of 1,960 differentially expressed ARGs were screened and functionally annotated through Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Univariate Cox regression analysis was performed to identify ARGs associated with prognosis. New ARGs signatures (including ESM1, CXCL13, TPCN2, PTPRD, FOXO1, and ELK3) were constructed for the prediction of overall survival (OS) in OC based on the least absolute shrinkage and selection operator (LASSO) and multivariate Cox regression analysis. Patients were divided based on their median risk score. In the The Cancer Genome Atlas (TCGA) training dataset, the survival analysis showed that overall survival was lower in the high-risk group than that in the low-risk group (p &lt; 0.0001). The International Cancer Genome Consortium (ICGC) database was used for validation, and the receiver operating characteristic (ROC) curves showed good performance. Univariate and multivariate Cox analyses were conducted to identify independent predictors of OS. The nomogram, including the risk score, age, stage, grade, and position, can not only show good predictive ability but also can explore the correlation analysis based on ARGs for immunogenicity, immune components, and immune phenotypes with risk score. Risk scores were correlated strongly with the type of immune infiltration. Furthermore, homologous recombination defect (HRD), NtAIscore, LOH score, LSTm score, stemness index (mRNAsi), and stromal cells were significantly correlated with risk score. The present study suggests that the novel signature constructed from six ARGs may serve as effective prognostic biomarkers for OC and contribute to clinical decision making and personalized prognostic monitoring of OC.


2021 ◽  
Author(s):  
Hongyang Liu ◽  
Junhu Wan ◽  
Quanling Feng ◽  
Jingyu Li ◽  
Jun Liu ◽  
...  

Abstract Background: Endometrial cancer (EC) is one of the most common types of gynecological cancer. Hypoxia is an important clinical feature and regulates various tumor processes. However, the prognostic value of hypoxia-related lncRNA in EC remains to be further elucidated. Here, we aimed to characterize the molecular features of EC by the development of a classification system based on the expression profile of hypoxia-related lncRNA.Methods: Univariate Cox regression analysis was used to identify hypoxia-related lncRNAs associated with overall survival. The least absolute shrinkage and selection operator (LASSO) Cox regression model was utilized to construct gene signature. Multivariate Cox regression analysis and receiver operating characteristic (ROC) curve analysis were also performed. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEEG) pathway, and Gene Set Enrichment Analysis (GESA) were used to identify hypoxia-related lncRNA pathway. Western blot and real-time PCR were used to detect target gene expression. The cell proliferation was determined by using WST-1 assay.Results: Based on univariate Cox regression analysis, we identified 17 hypoxia-related lncRNAs significantly associated with overall survival. Next, the least absolute shrinkage and selection operator (LASSO) Cox regression model was utilized to construct a multigene signature in the TCGA EC cohort. The risk score was confirmed as an independent predictor for overall survival in multivariate Cox regression analysis and receiver operating characteristic (ROC) curve analysis. Besides, the survival time of EC patients in different risk group was significantly correlated to clinicopathologic factors, such as age, stage and grade. Furthermore, hypoxia-related lncRNA associated with the high-risk group were involved in various aspects of the malignant progression of EC via Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEEG) pathway, and Gene Set Enrichment Analysis (GESA). Besides, using CIBERSORT analysis, we found a different immune cell environment characterization of EC between different cluster and risk group. Moreover, the risk score was closely correlated to immunotherapy response, microsatellite instability and tumor mutation burden (TMB). Finally, we select one hypoxia-related lncRNA SOS1-IT1 to validate its role in hypoxia and EC progression. Interestingly, we found SOS1-IT1 was overexpressed in tumor tissues, and closely correlated with clinicopathological parameters of EC. The expression level of SOS1-IT1 was significantly increased under hypoxia condition. Additionally, the important hypoxia regulatory factor HIF-1α can directly bind SOS1-IT1 promoter region, and affect its expression level. Conclusions: In summary, this study established a new EC classification based on the hypoxia-related lncRNA signature, thereby provide a novel sight to understand the potential mechanism of human EC development.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Chunlei Wu ◽  
Quanteng Hu ◽  
Dehua Ma

AbstractLung adenocarcinoma (LUAD) is the main pathological subtype of Non-small cell lung cancer. We downloaded the gene expression profile and immune-related gene set from the TCGA and ImmPort database, respectively, to establish immune-related gene pairs (IRGPs). Then, IRGPs were subjected to univariate Cox regression analysis, LASSO regression analysis, and multivariable Cox regression analysis to screen and develop an IRGPs signature. The receiver operating characteristic curve (ROC) was applied for evaluating the predicting accuracy of this signature by calculating the area under ROC (AUC) and data from the GEO set was used to validate this signature. The relationship of 22 tumor-infiltrating immune cells (TIICs) to the immune risk score was also investigated. An IRGPs signature with 8 IRGPs was constructed. The AUC for 1- and 3-year overall survival in the TCGA set was 0.867 and 0.870, respectively. Similar results were observed in the AUCs of GEO set 1, 2 and 3 (GEO set 1 [1-year: 0.819; 3-year: 0.803]; GEO set 2 [1-year: 0.834; 3-year: 0.870]; GEO set 3 [1-year: 0.955; 3-year: 0.827]). Survival analysis demonstrated high-risk LUAD patients exhibited poorer prognosis. The multivariable Cox regression indicated that the risk score was an independent prognostic factor. The immune risk score was highly associated with several TIICs (Plasma cells, memory B cells, resting memory CD4 T cells, and activated NK cells). We developed a novel IRGPs signature for predicting 1- and 3- year overall survival in LUAD, which would be helpful for prognosis assessment of LUAD.


2021 ◽  
Author(s):  
Shaopei Ye ◽  
Wenbin Tang ◽  
Ke Huang

Abstract Background: Autophagy is a biological process to eliminate dysfunctional organelles, aggregates or even long-lived proteins. . Nevertheless, the potential function and prognostic values of autophagy in Wilms Tumor (WT) are complex and remain to be clarifed. Therefore, we proposed to systematically examine the roles of autophagy-associated genes (ARGs) in WT.Methods: Here, we obtained differentially expressed autophagy-related genes (ARGs) between healthy and Wilms tumor from Therapeutically Applicable Research To Generate Effective Treatments(TARGET) and The Cancer Genome Atlas (TCGA) database. The functionalities of the differentially expressed ARGs were analyzed using Gene Ontology. Then univariate COX regression analysis and multivariate COX regression analysis were performed to acquire nine autophagy genes related to WT patients’ survival. According to the risk score, the patients were divided into high-risk and low-risk groups. The Kaplan-Meier curve demonstrated that patients with a high-risk score tend to have a poor prognosis.Results: Eighteen DEARGs were identifed, and nine ARGs were fnally utilized to establish the FAGs based signature in the TCGA cohort. we found that patients in the high-risk group were associated with mutations in TP53. We further conducted CIBERSORT analysis, and found that the infiltration of Macrophage M1 was increased in the high-risk group. Finally, the expression levels of crucial ARGs were verifed by the experiment, which were consistent with our bioinformatics analysis.Conclusions: we emphasized the clinical significance of autophagy in WT, established a prediction system based on autophagy, and identified a promising therapeutic target of autophagy for WT.


2021 ◽  
Vol 12 ◽  
Author(s):  
Shaojie Chen ◽  
Feifei Huang ◽  
Shangxiang Chen ◽  
Yinting Chen ◽  
Jiajia Li ◽  
...  

ObjectiveGrowing evidence has highlighted that the immune and stromal cells that infiltrate in pancreatic cancer microenvironment significantly influence tumor progression. However, reliable microenvironment-related prognostic gene signatures are yet to be established. The present study aimed to elucidate tumor microenvironment-related prognostic genes in pancreatic cancer.MethodsWe applied the ESTIMATE algorithm to categorize patients with pancreatic cancer from TCGA dataset into high and low immune/stromal score groups and determined their differentially expressed genes. Then, univariate and LASSO Cox regression was performed to identify overall survival-related differentially expressed genes (DEGs). And multivariate Cox regression analysis was used to screen independent prognostic genes and construct a risk score model. Finally, the performance of the risk score model was evaluated by Kaplan-Meier curve, time-dependent receiver operating characteristic and Harrell’s concordance index.ResultsThe overall survival analysis demonstrated that high immune/stromal score groups were closely associated with poor prognosis. The multivariate Cox regression analysis indicated that the signatures of four genes, including TRPC7, CXCL10, CUX2, and COL2A1, were independent prognostic factors. Subsequently, the risk prediction model constructed by those genes was superior to AJCC staging as evaluated by time-dependent receiver operating characteristic and Harrell’s concordance index, and both KRAS and TP53 mutations were closely associated with high risk scores. In addition, CXCL10 was predominantly expressed by tumor associated macrophages and its receptor CXCR3 was highly expressed in T cells at the single-cell level.ConclusionsThis study comprehensively investigated the tumor microenvironment and verified immune/stromal-related biomarkers for pancreatic cancer.


Sign in / Sign up

Export Citation Format

Share Document