scholarly journals Antigen-specific single B cell sorting and expression-cloning from immunoglobulin humanized rats: a rapid and versatile method for the generation of high affinity and discriminative human monoclonal antibodies

2017 ◽  
Vol 17 (1) ◽  
Author(s):  
Laure-Hélène Ouisse ◽  
Laetitia Gautreau-Rolland ◽  
Marie-Claire Devilder ◽  
Michael Osborn ◽  
Melinda Moyon ◽  
...  
Nature ◽  
2008 ◽  
Vol 453 (7195) ◽  
pp. 667-671 ◽  
Author(s):  
Jens Wrammert ◽  
Kenneth Smith ◽  
Joe Miller ◽  
William A. Langley ◽  
Kenneth Kokko ◽  
...  

PLoS ONE ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. e0244158
Author(s):  
WeiYu Lin ◽  
Wei-Ching Liang ◽  
Trung Nguy ◽  
Mauricio Maia ◽  
Tulika Tyagi ◽  
...  

The proactive generation of anti-idiotypic antibodies (anti-IDs) against therapeutic antibodies with desirable properties is an important step in pre-clinical and clinical assay development supporting their bioanalytical programs. Here, we describe a robust platform to generate anti-IDs using rabbit single B cell sorting-culture and cloning technology by immunizing rabbits with therapeutic drug Fab fragment and sorting complementarity determining regions (CDRs) specific B cells using designed framework control as a negative gate to exclude non-CDRs-specific B cells. The supernatants of cultured B cells were subsequently screened for binding to drug-molecule by enzyme-linked immunosorbent assay and the positive hits of B cell lysates were selected for cloning of their immunoglobulin G (IgG) variable regions. The recombinant monoclonal anti-IDs generated with this method have high affinity and specificity with broad epitope coverage and different types. The recombinant anti-IDs were available for assay development to support pharmacokinetic (PK) and immunogenicity studies within 12 weeks from the start of rabbit immunization. Using this novel rapid and efficient in-house approach we have generated a large panel of anti-IDs against a series of 11 therapeutic antibody drugs and successfully applied them to the clinical assay development.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2081-2081
Author(s):  
Szumam Liu ◽  
Mohammad Abdelgawwad ◽  
Shanrun Liu ◽  
X. Long Zheng

Abstract Introduction. Immune thrombotic thrombocytopenic purpura (iTTP) is a potentially fatal blood disorder, resulting from autoantibodies against ADAMTS13, a plasma metalloprotease that cleaves von Willebrand factor. However, the structural feature, binding epitope, and the mechanism of action of these autoantibodies in patients with acute iTTP are not fully understood. Methods. To further understand the pathogenesis of iTTP, single B cell immunoglobulin (Ig) sequencing using 10xChromium in 4 patients experiencing an acute episode of iTTP was performed; the expression and preliminary functional characterizations of selected clones were also carried out. Results. Approximately 2,631 viable and fluoresceinated ADAMTS13 labeled B cells (e.g., 7AAD -CD19 +CD20 +ADAMTS13 +) were sorted out from peripheral blood mononuclear cells of four patients with acute iTTP. These enriched ADAMTS13 antibody-producing B cells were then used for single cell analysis using 10xGenomics 5'-VDJ kit following the manufacturer's instruction. The single-cell gene expression libraries and VDJ libraries were constructed and sequenced by Hiseq at 20,000 reads/cell for gene expression and 5,000 reads/cell for VDJ sequences. Sequencing FASTQ files were mapped and counted by running through the Cell Ranger pipeline, and the final data were then further analyzed by the Loupe browser. We showed for the first time that the most frequent VJ combinations in the anti-ADAMTS13 IgG were: IGHV4-39:ILGJ4, IGHV3-48:ILGJ4, IGLV1-44:ILGLJ2, GLV5-45:ILGLJ3, IGLV2-14:ILGJ2, and IGLV3-21:ILGJ3 as shown in Figure 1. Of the top ten clones, the most frequently observed CDR3 (complementarity-determining region-3) sequences of these antibodies were CARDQLGISETQGSDLW on the heavy chain and CVIWHNSAWVF on the light chain as shown in Figure 2 and Table 1. The variable region sequences from the heavy and the light chains of Ig molecules were cloned into a human IgHG1 and a human IgL vector, respectively, which was then cotransfected in HEK293 cells. Western blotting, ELISA, immunoprecipitation, and functional assays were used to determine the expression and the function of human monoclonal IgG antibodies. Our preliminary results demonstrated the human monoclonal IgG antibodies bound and/or inhibited plasma ADAMTS13 activity. Conclusions. We conclude that there is clonal expansion of ADAMTS13 antibody producing B cells in acute iTTP and the cloned human monoclonal antibodies using the single B cell sequencing approach are functional. Our ongoing analysis on the structural and functional relationship of a large number of isolated human monoclonal antibodies may shed new light on the pathogenesis of iTTP. These antibodies may be useful to explore structural elements required for allosteric regulation of ADAMTS13 activity. Figure 1 Figure 1. Disclosures Zheng: AJMC: Honoraria; Clotsolution: Other: Co-founder; Takeda: Consultancy, Honoraria; Sanofi-Genzyme: Honoraria, Speakers Bureau; Alexion: Speakers Bureau.


1987 ◽  
Vol 16 (4) ◽  
pp. 281-292 ◽  
Author(s):  
Claude Desgranges ◽  
Jacqueline Paire ◽  
Christian Pichoud ◽  
Sylvie Souche ◽  
Dominique Frommel ◽  
...  

Viruses ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 178
Author(s):  
Kazuya Nagano ◽  
Yasuo Tsutsumi

Antibody drugs with a high affinity and specificity are effective and safe for intractable diseases, such as cancers and autoimmune diseases. Furthermore, they have played a central role in drug discovery, currently accounting for eight of the top 20 pharmaceutical products worldwide by sales. Forty years ago, clinical trials on antibody drugs that were thought to be a magic bullet failed, partly due to the immunogenicity of monoclonal antibodies produced in mice. The recent breakthrough in antibody drugs is largely because of the contribution of phage display technology. Here, we reviewed the importance of phage display technology as a powerful platform for antibody drug discovery from various perspectives, such as the development of human monoclonal antibodies, affinity enhancement of monoclonal antibodies, and the identification of therapeutic targets for antibody drugs.


Sign in / Sign up

Export Citation Format

Share Document