scholarly journals The role of CD36-Fabp4-PPARγ in skeletal muscle involves insulin resistance in intrauterine growth retardation mice with catch-up growth

2022 ◽  
Vol 22 (1) ◽  
Author(s):  
Jing Liu ◽  
Hang Zhao ◽  
Linlin Yang ◽  
Xing Wang ◽  
Linquan Yang ◽  
...  

Abstract Background Studies have shown that the high incidence of type 2 diabetes in China is associated with low birth weight and excessive nutrition in adulthood, which occurred during the famine years of the 1950s and 1960s, though the specific molecular mechanisms are unclear. In this study, we proposed a severe maternal caloric restriction during late pregnancy, followed by a post weaning high-fat diet in mice. After weaning, normal and high-fat diets were provided to mice to simulate the dietary pattern of modern society. Methods The pregnant mice were divided into two groups: normal birth weight (NBW) group and low birth weight (LBW) group. After 3 weeks for weaning, the male offspring mice in the NBW and LBW groups were then randomly divided into four subgroups: NC, NH, LC and LC groups. The offspring mice in the NC, NH, LC and LC groups were respectively fed with normal diet, normal diet, high-fat diet and high-fat diet for 18 weeks. After 18 weeks of dietary intervention, detailed analyses of mRNA and protein expression patterns, signaling pathway activities, and promoter methylation states were conducted for all relevant genes. Results After dietary intervention for 18 weeks, the expressions of CD36, Fabp4, PPARγ, FAS, and ACC1 in the skeletal muscle tissue of the LH group were significantly increased compared with the LC and NH groups (P < 0.05). The level of p-AMPK/AMPK in the skeletal muscle tissue of the LH group was significantly decreased compared with the LC and NH groups (P < 0.05). CPT1 and PGC-1α protein expressions were up-regulated in the LH group (P < 0.05) compared to the LC group. Additionally, the DNA methylation levels of the PGC-1α and GLUT4 gene promoters in the skeletal muscle of the LH groups were higher than those of the LC and NH groups (P < 0.05). However, PPARγ DNA methylation level in the LH group was lower than those of the LC and NH groups (P < 0.05). Conclusions LBW combined with high-fat diets may increase insulin resistance and diabetes through regulating the CD36-related Fabp4-PPARγ and AMPK/ACC signaling pathways.

2005 ◽  
Vol 98 (1) ◽  
pp. 350-355 ◽  
Author(s):  
Erin A. Turvey ◽  
George J. F. Heigenhauser ◽  
Michelle Parolin ◽  
Sandra J. Peters

We tested the hypothesis that a high-fat diet (75% fat; 5% carbohydrates; 20% protein), for which 15% of the fat content was substituted with n-3 fatty acids, would not exhibit the diet-induced increase in pyruvate dehydrogenase kinase (PDK) activity, which is normally observed in human skeletal muscle. The fat content was the same in both the regular high-fat diet (HF) and in the n-3-substituted diet (N3). PDK activity increased after both high-fat diets, but the increase was attenuated after the N3 diet (0.051 ± 0.007 and 0.218 ± 0.047 min−1 for pre- and post-HF, respectively; vs. 0.073 ± 0.016 and 0.133 ± 0.032 min−1 for pre- and post-N3, respectively). However, the active form of pyruvate dehydrogenase (PDHa) activity decreased to a similar extent in both conditions (0.93 ± 0.17 and 0.43 ± 0.09 mmol/kg wet wt pre- and post-HF; vs. 0.87 ± 0.19 and 0.39 ± 0.05 mmol/kg wet wt pre- and post-N3, respectively). This suggested that the difference in PDK activity did not affect PDHa activation in the basal state, and it was regulated by intramitochondrial effectors, primarily muscle pyruvate concentration. Muscle glycogen content was consistent throughout the study, before and after both diet conditions, whereas muscle glucose-6-phosphate, glycerol-3-phosphate, lactate, and pyruvate were decreased after the high-fat diets. Plasma triglycerides decreased after both high-fat diets but decreased to a greater extent after the N3, whereas plasma free fatty acids increased after both diets, but to a lesser extent after the N3. In summary, PDK activity is decreased after a high-fat diet that is rich in n-3 fatty acids, although PDHa activity was unaltered. In addition, our data demonstrated that the hypolipidemic effect of n-3 fatty acids occurs earlier (3 days) than previously reported and is evident even when the diet has 75% of its total energy derived from fat.


2010 ◽  
Vol 20 (5) ◽  
pp. 370-380 ◽  
Author(s):  
Yanmei Niu ◽  
Hong Yuan ◽  
Li Fu

Insulin resistance (IR) is a common pathophysiological feature of Type 2 diabetes. Although the mechanisms leading to IR are still elusive, evidence has shown that aerobic exercise can reverse this process. To investigate the effects of aerobic exercise on IR, the authors created an IR animal model by feeding C57BL/6 mice a high-fat diet for 8 wk. They then compared the effect of 6 wk of treadmill training (60 min/d) at 75% VO2max on mice in normal-diet (NE) and high-fat-diet (HE) groups with their sedentary control groups. Levels of skeletal-muscle AMPKα (AMP-activated protein kinase α), ACC (acetyl-CoA carboxylases), and CPT1 (carnitine palmitoyltransferase 1) mRNA and AMPKα, pAMPK-Thr172, ACC, pACC-Ser79, and CPT1 protein expressions were analyzed. In addition, fasting serum levels of insulin, triglyceride, and cholesterol were measured. The results demonstrate that 6 wk of exercise increased AMPKα mRNA expression by 11% and 25 % (p < .01) in the NE and HE groups, respectively, and AMPKα protein expression by 37.9% and 20.1% (p < .01) in NE and HE compared with their sedentary control. In addition, ACC mRNA and protein expressions declined, whereas CPT1 mRNA and protein expressions were elevated in both exercise groups compared with sedentary control groups. In addition, pAMPK-Thr172 and pACC-Ser79 expression increased significantly in the NE and HE groups compared with sedentary control groups. In conclusion, our results demonstrate that 6 wk of aerobic exercise can effectively ameliorate IR by increasing the expression of AMPKα and pAMPK-Thr172, thereby activating the key enzymes that facilitate lipid metabolism.


1994 ◽  
Vol 71 (06) ◽  
pp. 755-758 ◽  
Author(s):  
E M Bladbjerg ◽  
P Marckmann ◽  
B Sandström ◽  
J Jespersen

SummaryPreliminary observations have suggested that non-fasting factor VII coagulant activity (FVII:C) may be related to the dietary fat content. To confirm this, we performed a randomised cross-over study. Seventeen young volunteers were served 2 controlled isoenergetic diets differing in fat content (20% or 50% of energy). The 2 diets were served on 2 consecutive days. Blood samples were collected at 8.00 h, 16.30 h and 19.30 h, and analysed for triglycerides, FVII coagulant activity using human (FVII:C) or bovine thromboplastin (FVII:Bt), and FVII amidolytic activity (FVIPAm). The ratio FVII:Bt/FVII:Am (a measure of FVII activation) increased from fasting levels on both diets, but most markedly on the high-fat diet. In contrast, FVII: Am (a measure of FVII protein) tended to decrease from fasting levels on both diets. FVII:C rose from fasting levels on the high-fat diet, but not on the low-fat diet. The findings suggest that high-fat diets increase non-fasting FVII:C, and consequently may be associated with increased risk of thrombosis.


2021 ◽  
Author(s):  
Qiao Jie ◽  
Yue-Zhong Ren ◽  
Yi-wen Wu

High-fat diets(HFD)are defined as lipids accounting for exceeded 30% of total energy in-take, and current research is mostly 45% and 60%. With a view of the tendency that patients who...


2015 ◽  
Vol 35 (suppl_1) ◽  
Author(s):  
Megha Murali ◽  
Carla Taylor ◽  
Peter Zahradka ◽  
Jeffrey Wigle

Background and Objective: Arterial stiffness is recognized as being an independent predictor of incipient vascular disease associated with obesity and metabolic syndrome. In obese subjects, the decrease in the plasma level of adiponectin, an anti-diabetic and anti-atherogenic adipokine, is well known. Hence the aim of our study was to examine the effect of loss of adiponectin on the development of arterial stiffness in response to a high fat diet. Methods and Results: Male 8-week old adiponectin knockout (APN KO) and C57BL/6 (control) mice were fed a high fat diet (60% Calories from fat) for 12 weeks to induce obesity and insulin resistance (n=10/group). APN KO and C57BL/6 mice were fed a low fat diet (10% Calories from fat) and used as lean controls (n=10/group). After 12 weeks on the high fat diet, the APN KO mice weighed significantly more than the C57BL/6 mice (45.1±1.3 g vs 40.1±1.1 g, p=0.0008) but there was no difference in the final weights between genotypes fed the low fat diet. APN KO mice on both high and low fat diets for 12 weeks developed insulin resistance as measured by oral glucose tolerance test (Area under curve (AUC) mmol/L х min = 437±70 and 438±57) as compared to the C57BL/6 mice fed low or high fat diets (AUC mmol/L х min = 251±27 and 245±43). Arterial stiffness was determined by Doppler pulse wave velocity analysis of the femoral artery. Pulse wave velocity was increased in APN KO mice fed a high fat diet relative to those fed the low fat diet (12.56±0.78 cm/s vs 9.47±0.95 cm/s, p=0.0035; n=8-10). Pulse wave velocity was not different between C57BL/6 control mice on the low or high fat diets (10.63±0.73 cm/s and 10.86±0.50 cm/s), thus revealing that only mice deficient in adiponectin developed arterial stiffness in response to high fat diet. Conclusions: Potentiation of the vascular stiffness in diet-induced obese APN KO mice indicates that adiponectin has a role in modulating vascular structure and the APN KO mouse models the vascular changes that occur in human obesity and metabolic disorders. Morphometric analysis of the aortic tissues for vessel thickness and expression of extracellular proteins will further validate the potential role of adiponectin on the maintenance of arterial elasticity in addition to its known effect on eNOS mediated vasoprotection.


Sign in / Sign up

Export Citation Format

Share Document