Faculty Opinions recommendation of High-fat diets cause insulin resistance despite an increase in muscle mitochondria.

Author(s):  
Zecharia Madar
2008 ◽  
Vol 105 (22) ◽  
pp. 7815-7820 ◽  
Author(s):  
C. R. Hancock ◽  
D.-H. Han ◽  
M. Chen ◽  
S. Terada ◽  
T. Yasuda ◽  
...  

2008 ◽  
Vol 19 (8) ◽  
pp. 505-513 ◽  
Author(s):  
Anne M. Flanagan ◽  
Jackie L. Brown ◽  
Consuelo A. Santiago ◽  
Pauline Y. Aad ◽  
Leon J. Spicer ◽  
...  

2011 ◽  
Vol 22 (4) ◽  
pp. 366-371 ◽  
Author(s):  
Johan De Vogel-van den Bosch ◽  
Sjoerd A.A. van den Berg ◽  
Silvia Bijland ◽  
Peter J. Voshol ◽  
Louis M. Havekes ◽  
...  

2009 ◽  
Vol 297 (5) ◽  
pp. R1302-R1311 ◽  
Author(s):  
Stéphane Boghossian ◽  
Karalee Lemmon ◽  
MieJung Park ◽  
David A. York

Intracerebroventricular insulin decreases food intake (FI) . The central bed nucleus of the amygdala (CeA), as other regions of the brain regulating feeding behavior, expresses insulin receptors. Our objectives were to show an insulin anorectic response in the amygdala, study the effect of high-fat diets on this response, and map the neural network activated by CeA insulin using c-Fos immunohistochemistry. Sprague-Dawley (SD) rats fitted with unilateral CeA cannulas were adapted to a low-fat (LFD) diet before they were fed a high-fat diet (HFD). Their feeding response to CeA saline or insulin (8 mU) was tested after 24 h, 72 h, or 7 days of being on a HFD. In a second experiment, SD rats were fed the HFD for 3, 7, or 49 days and were then refed with the LFD. They were tested for their insulin response before and after an HFD and every 3 days for the following weeks. Insulin tolerance tests were performed in a parallel group of rats. The CeA insulin stimulation c-Fos expression was studied to identify the distribution of activated neuronal populations. Feeding an HFD for 72 h or more induced a CeA, but not peripheral, insulin resistance, which was slowly reversed by LFD refeeding. The duration of HFD feeding determined the time frame for reversal of the insulin resistance. CeA insulin increased c-Fos in multiple brain regions, including the arcuate nucleus/paraventricular nucleus region of the hypothalamus. We conclude that the amygdala may be an important site for insulin regulation of food intake and may have a significant role in determining susceptibility to HFD-induced obesity.


2009 ◽  
Vol 25 (2) ◽  
pp. 185-194 ◽  
Author(s):  
Silvia Wein ◽  
Siegfried Wolffram ◽  
Jürgen Schrezenmeir ◽  
Daniela Gašperiková ◽  
Iwar Klimeš ◽  
...  

Antioxidants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1251
Author(s):  
Yuqing Tan ◽  
Christina C. Tam ◽  
Matt Rolston ◽  
Priscila Alves ◽  
Ling Chen ◽  
...  

Quercetin is a flavonoid that has been shown to have health-promoting capacities due to its potent antioxidant activity. However, the effect of chronic intake of quercetin on the gut microbiome and diabetes-related biomarkers remains unclear. Male C57BL/6J mice were fed HF or HF supplemented with 0.05% quercetin (HFQ) for 6 weeks. Diabetes-related biomarkers in blood were determined in mice fed high-fat (HF) diets supplemented with quercetin. Mice fed the HFQ diet gained less body, liver, and adipose weight, while liver lipid and blood glucose levels were also lowered. Diabetes-related plasma biomarkers insulin, leptin, resistin, and glucagon were significantly reduced by quercetin supplementation. In feces, quercetin supplementation significantly increased the relative abundance of Akkermansia and decreased the Firmicutes/Bacteroidetes ratio. The expression of genes Srebf1, Ppara, Cyp51, Scd1, and Fasn was downregulated by quercetin supplementation. These results indicated that diabetes biomarkers are associated with early metabolic changes accompanying obesity, and quercetin may ameliorate insulin resistance.


Diabetes ◽  
2015 ◽  
Vol 64 (6) ◽  
pp. 2116-2128 ◽  
Author(s):  
Orla M. Finucane ◽  
Claire L. Lyons ◽  
Aoife M. Murphy ◽  
Clare M. Reynolds ◽  
Rut Klinger ◽  
...  

2008 ◽  
Vol 295 (5) ◽  
pp. E1009-E1017 ◽  
Author(s):  
Jose E. Galgani ◽  
Cedric Moro ◽  
Eric Ravussin

Metabolic flexibility is the capacity for the organism to adapt fuel oxidation to fuel availability. The inability to modify fuel oxidation in response to changes in nutrient availability has been implicated in the accumulation of intramyocellular lipid and insulin resistance. The metabolic flexibility assessed by the ability to switch from fat to carbohydrate oxidation is usually impaired during a hyperinsulinemic clamp in insulin-resistant subjects; however, this “metabolic inflexibility” is mostly the consequence of impaired cellular glucose uptake. Indeed, after controlling for insulin-stimulated glucose disposal rate (amount of glucose available for oxidation), metabolic flexibility is not altered in obesity regardless of the presence of type 2 diabetes. To understand how intramyocellular lipids accumulate and cause insulin resistance, the assessment of metabolic flexibility to high-fat diets is more relevant than metabolic flexibility during a hyperinsulinemic clamp. An impaired capacity to upregulate muscle lipid oxidation in the face of high lipid supply may lead to increased muscle fat accumulation and insulin resistance. Surprisingly, very few studies have investigated the response to high-fat diets. In this review, we discuss the role of glucose disposal rate, adipose tissue lipid storage, and mitochondrial function on metabolic flexibility. Additionally, we emphasize the bias of using the change in respiratory quotient to calculate metabolic flexibility and propose novel approaches to assess metabolic flexibility. On the basis of current evidence, one cannot conclude that impaired metabolic flexibility is responsible for the accumulation of intramyocellular lipid and insulin resistance. We propose to study metabolic flexibility in response to high-fat diets in individuals having contrasting degree of insulin sensitivity and/or mitochondrial characteristics.


2013 ◽  
Vol 12 (1) ◽  
pp. e903
Author(s):  
A. Furriel ◽  
P.C. Silva ◽  
P.C.G.P. Silva ◽  
D.B. De Souza ◽  
W.S. Costa ◽  
...  

2017 ◽  
Vol 474 (17) ◽  
pp. 2981-2991 ◽  
Author(s):  
Giovanna de Brito ◽  
Fernanda C. Lupinacci ◽  
Flávio H. Beraldo ◽  
Tiago G. Santos ◽  
Martín Roffé ◽  
...  

Prion protein (PrPC) was initially described due to its involvement in transmissible spongiform encephalopathies. It was subsequently demonstrated to be a cell surface molecule involved in many physiological processes, such as vesicle trafficking. Here, we investigated the roles of PrPC in the response to insulin and obesity development. Two independent PrPC knockout (KO) and one PrPC overexpressing (TG20) mouse models were fed high-fat diets, and the development of insulin resistance and obesity was monitored. PrPC KO mice fed high-fat diets presented all of the symptoms associated with the development of insulin resistance: hyperglycemia, hyperinsulinemia, and obesity. Conversely, TG20 animals fed high-fat diets showed reduced weight and insulin resistance. Accordingly, the expression of peroxisome proliferator-activated receptor gamma (PPARγ) was reduced in PrPC KO mice and increased in TG20 animals. PrPC KO cells also presented reduced glucose uptake upon insulin stimulation, due to reduced translocation of the glucose transporter Glut4. Thus, our results suggest that PrPC reflects susceptibility to the development of insulin resistance and metabolic syndrome.


Sign in / Sign up

Export Citation Format

Share Document