scholarly journals Allium hookeri root protects oxidative stress-induced inflammatory responses and β-cell damage in pancreas of streptozotocin-induced diabetic rats

Author(s):  
Seong-Soo Roh ◽  
O Jun Kwon ◽  
Jae Heon Yang ◽  
You Suk Kim ◽  
Sung Hyun Lee ◽  
...  
2004 ◽  
Vol 279A (1) ◽  
pp. 685-691 ◽  
Author(s):  
Mehmet Kanter ◽  
Omer Coskun ◽  
Ahmet Korkmaz ◽  
Sukru Oter

2021 ◽  
Vol 2 (1) ◽  
pp. 1-8
Author(s):  
César Esquivel-Chirino ◽  
Juan Carlos Gómez-Landeros ◽  
Erika Patricia Carabantes-Campos ◽  
Daniela Carmona-Ruiz ◽  
Yolanda Valero-Princet ◽  
...  

Periodontal disease is an inflammatory condition that alters the periodontium, resulting in destruction of the alveolar bone; without treatment the condition may lead to tooth loss. Dental implants are an alternative for substitution of naturally lost teeth as they have high success rates; however, some factors are related to its failure. Peri-implantitis (PI) is a pathological condition that affects the tissues surrounding dental implants and has been reported as the major cause of implant failure; PI and periodontal diseases are characterized by tissue inflammation and bone damage. In homeostasis conditions, reactive oxygen species (ROS) have been shown to be involved in cell maintenance, signal transduction, and repair of all tissues, but ROS overaccumulation leads to oxidative stress, which generates cell damage and tissue destruction; likewise, antioxidants protect against the destructive effects of ROS by turning free radicals into waste products. The main purpose of this review was to determine some aspects of inflammatory responses and oxidative stress and analyze their relationship with the lack of osseointegration and PI.


2022 ◽  
Vol 124 (1) ◽  
pp. 151820
Author(s):  
Umashanker Navik ◽  
Kajal Rawat ◽  
Kulbhushan Tikoo
Keyword(s):  

Nanoscale ◽  
2016 ◽  
Vol 8 (15) ◽  
pp. 7923-7932 ◽  
Author(s):  
Guang-Ming Lyu ◽  
Yan-Jie Wang ◽  
Xue Huang ◽  
Huai-Yuan Zhang ◽  
Ling-Dong Sun ◽  
...  

Hydrophilic 5 nm and 25 nm CeO2nanocubes, synthesized from the convenient acetate assisted hydrothermal method, could be employed as greatly promising potential antioxidants for controlling H2O2-induced pancreatic β-cell damage.


Endocrinology ◽  
2013 ◽  
Vol 154 (4) ◽  
pp. 1424-1433 ◽  
Author(s):  
M. Padmasekar ◽  
N. Lingwal ◽  
B. Samikannu ◽  
C. Chen ◽  
H. Sauer ◽  
...  

Abstract Oxidative stress produced during pancreatic islet isolation leads to significant β-cell damage. Homeostatic cytokines secreted subsequently to islet transplantation damage β-cells by generating oxygen free radicals. In this study, exendin-4, a glucagon-like peptide-1 analog improved islet transplantation outcome by increasing the survival of diabetic recipient mice from 58% to 100%. We hypothesized that this beneficial effect was due to the ability of exendin-4 to reduce oxidative stress. Further experiments showed that it significantly reduced the apoptotic rate of cultured β-cells subjected to hypoxia or to IL-1β. Reduction of apoptotic events was confirmed in pancreatic islet grafts of exendin-4–treated mice. Exendin-4 enhanced Akt phosphorylation of β-cells and insulin released from them. It even augmented insulin secretion from islets cultivated at hypoxic conditions. Exposure to hypoxia led to a decrease in the activation of Akt, which was reversed when β-cells were pretreated with exendin-4. Moreover, exendin-4 increased the activity of redox enzymes in a hypoxia-treated β-cell line and reduced reactive oxygen species production in isolated pancreatic islets. Recovery from diabetes in mice transplanted with hypoxic islets was more efficient when they received exendin-4. In conclusion, exendin-4 rescued islets from oxidative stress caused by hypoxia or due to cytokine exposure. It improved the outcome of syngenic and xenogenic islet transplantation.


2004 ◽  
Vol 203 (3) ◽  
pp. 145-154 ◽  
Author(s):  
Omer Coskun ◽  
Ayse Ocakci ◽  
Taner Bayraktaroglu ◽  
Mehmet Kanter

2021 ◽  
Vol 12 ◽  
Author(s):  
Jennifer S. Stancill ◽  
John A. Corbett

Oxidative stress is hypothesized to play a role in pancreatic β-cell damage, potentially contributing to β-cell dysfunction and death in both type 1 and type 2 diabetes. Oxidative stress arises when naturally occurring reactive oxygen species (ROS) are produced at levels that overwhelm the antioxidant capacity of the cell. ROS, including superoxide and hydrogen peroxide, are primarily produced by electron leak during mitochondrial oxidative metabolism. Additionally, peroxynitrite, an oxidant generated by the reaction of superoxide and nitric oxide, may also cause β-cell damage during autoimmune destruction of these cells. β-cells are thought to be susceptible to oxidative damage based on reports that they express low levels of antioxidant enzymes compared to other tissues. Furthermore, markers of oxidative damage are observed in islets from diabetic rodent models and human patients. However, recent studies have demonstrated high expression of various isoforms of peroxiredoxins, thioredoxin, and thioredoxin reductase in β-cells and have provided experimental evidence supporting a role for these enzymes in promoting β-cell function and survival in response to a variety of oxidative stressors. This mini-review will focus on the mechanism by which thioredoxins and peroxiredoxins detoxify ROS and on the protective roles of these enzymes in β-cells. Additionally, we speculate about the role of this antioxidant system in promoting insulin secretion.


2020 ◽  
Vol 11 (9) ◽  
Author(s):  
Baochen Bai ◽  
Yanyan Yang ◽  
Qi Wang ◽  
Min Li ◽  
Chao Tian ◽  
...  

Abstract Inflammasomes are a class of cytosolic protein complexes. They act as cytosolic innate immune signal receptors to sense pathogens and initiate inflammatory responses under physiological and pathological conditions. The NLR-family pyrin domain-containing protein 3 (NLRP3) inflammasome is the most characteristic multimeric protein complex. Its activation triggers the cleavage of pro-interleukin (IL)-1β and pro-IL-18, which are mediated by caspase-1, and secretes mature forms of these mediators from cells to promote the further inflammatory process and oxidative stress. Simultaneously, cells undergo pro-inflammatory programmed cell death, termed pyroptosis. The danger signals for activating NLRP3 inflammasome are very extensive, especially reactive oxygen species (ROS), which act as an intermediate trigger to activate NLRP3 inflammasome, exacerbating subsequent inflammatory cascades and cell damage. Vascular endothelium at the site of inflammation is actively involved in the regulation of inflammation progression with important implications for cardiovascular homeostasis as a dynamically adaptable interface. Endothelial dysfunction is a hallmark and predictor for cardiovascular ailments or adverse cardiovascular events, such as coronary artery disease, diabetes mellitus, hypertension, and hypercholesterolemia. The loss of proper endothelial function may lead to tissue swelling, chronic inflammation, and the formation of thrombi. As such, elimination of endothelial cell inflammation or activation is of clinical relevance. In this review, we provided a comprehensive perspective on the pivotal role of NLRP3 inflammasome activation in aggravating oxidative stress and endothelial dysfunction and the possible underlying mechanisms. Furthermore, we highlighted the contribution of noncoding RNAs to NLRP3 inflammasome activation-associated endothelial dysfunction, and outlined potential clinical drugs targeting NLRP3 inflammasome involved in endothelial dysfunction. Collectively, this summary provides recent developments and perspectives on how NLRP3 inflammasome interferes with endothelial dysfunction and the potential research value of NLRP3 inflammasome as a potential mediator of endothelial dysfunction.


Sign in / Sign up

Export Citation Format

Share Document