scholarly journals The Impact of Oxidative Stress on Dental Implants

2021 ◽  
Vol 2 (1) ◽  
pp. 1-8
Author(s):  
César Esquivel-Chirino ◽  
Juan Carlos Gómez-Landeros ◽  
Erika Patricia Carabantes-Campos ◽  
Daniela Carmona-Ruiz ◽  
Yolanda Valero-Princet ◽  
...  

Periodontal disease is an inflammatory condition that alters the periodontium, resulting in destruction of the alveolar bone; without treatment the condition may lead to tooth loss. Dental implants are an alternative for substitution of naturally lost teeth as they have high success rates; however, some factors are related to its failure. Peri-implantitis (PI) is a pathological condition that affects the tissues surrounding dental implants and has been reported as the major cause of implant failure; PI and periodontal diseases are characterized by tissue inflammation and bone damage. In homeostasis conditions, reactive oxygen species (ROS) have been shown to be involved in cell maintenance, signal transduction, and repair of all tissues, but ROS overaccumulation leads to oxidative stress, which generates cell damage and tissue destruction; likewise, antioxidants protect against the destructive effects of ROS by turning free radicals into waste products. The main purpose of this review was to determine some aspects of inflammatory responses and oxidative stress and analyze their relationship with the lack of osseointegration and PI.

2016 ◽  
pp. 75-78
Author(s):  
Liliia Babynets ◽  
Tetiana Maevska

The study proved that patients with combined progress of osteoarthritis and chronic pancreatitis have reliable top-level activation of lipid peroxidation in terms of malonyc aldehyde and tissue destruction in terms of oxyproline, weakening of the antioxidant level (in terms of superoxide dismutase and SH-groups) and activation parameters of catalase and ceruloplasmin (p<0,05). The authentic predictority of patients biological age, duration of combined clinical courses, the functional capacity of the pancreas in terms of fecal α-elastase, structural state by ultrasound criteria for progression effects of oxidative stress, accumulation oxyproline activation parameters catalase and ceruloplasmin, which statistically was reflected by the presence of mainly moderate of significant correlations between these groups of indicators have been identified.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Aline Barbosa Ribeiro ◽  
Fernanda Brognara ◽  
Josiane Fernandes da Silva ◽  
Jaci Airton Castania ◽  
Patrícia Garani Fernandes ◽  
...  

Abstract Baroreceptor and chemoreceptor reflexes modulate inflammatory responses. However, whether these reflexes attenuate periodontal diseases has been poorly examined. Thus, the present study determined the effects of electrical activation of the carotid sinus nerve (CSN) in rats with periodontitis. We hypothesized that activation of the baro and chemoreflexes attenuates alveolar bone loss and the associated inflammatory processes. Electrodes were implanted around the CSN, and bilateral ligation of the first mandibular molar was performed to, respectively, stimulate the CNS and induce periodontitis. The CSN was stimulated daily for 10 min, during nine days, in unanesthetized animals. On the eighth day, a catheter was inserted into the left femoral artery and, in the next day, the arterial pressure was recorded. Effectiveness of the CNS electrical stimulation was confirmed by hypotensive responses, which was followed by the collection of a blood sample, gingival tissue, and jaw. Long-term (9 days) electrical stimulation of the CSN attenuated bone loss and the histological damage around the first molar. In addition, the CSN stimulation also reduced the gingival and plasma pro-inflammatory cytokines induced by periodontitis. Thus, CSN stimulation has a protective effect on the development of periodontal disease mitigating alveolar bone loss and inflammatory processes.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Speranza Rubattu ◽  
Maurizio Forte ◽  
Salvatore Raffa

Increased oxidative stress from both mitochondrial and cytosolic sources contributes to the development and the progression of cardiovascular diseases (CVDs), and it is a target of therapeutic interventions. The numerous efforts made over the last decades in order to develop tools able to monitor the oxidative stress level in patients affected by CVDs rely on the need to gain information on the disease state. However, this goal has not been satisfactorily accomplished until now. Among others, the isolation of circulating leukocytes to measure their oxidant level offers a valid, noninvasive challenge that has been tested in few pathological contexts, including hypertension, atherosclerosis and its clinical manifestations, and heart failure. Since leukocytes circulate in the blood stream, it is expected that they might reflect quite closely both systemic and cardiovascular oxidative stress and provide useful information on the pathological condition. The results of the studies discussed in the present review article are promising. They highlight the importance of measuring oxidative stress level in circulating mononuclear cells in different CVDs with a consistent correlation between degree of oxidative stress and severity of CVD and of its complications. Importantly, they also point to a double role of leukocytes, both as a marker of disease condition and as a direct contributor to disease progression. Finally, they show that the oxidative stress level of leukocytes reflects the impact of therapeutic interventions. It is likely that the isolation of leukocytes and the measurement of oxidative stress, once adequately developed, may represent an eligible tool for both research and clinical purposes to monitor the role of oxidative stress on the promotion and progression of CVDs, as well as the impact of therapies.


Biologia ◽  
2006 ◽  
Vol 61 (6) ◽  
Author(s):  
Monika Ďurfinová ◽  
Marta Brechtlová ◽  
Branislav Líška ◽  
Želmíra Barošková

Abstract3′,5′-cAMP plays an important role as a second messenger molecule controlling multiple cellular processes in the brain. Its levels are decreased by phosphodiesterases (PDEs), responsible for hydrolysis of intracellular cAMP. A part of the PDE activity is dependent on the effect of calcium, mediated by its binding to calmodulin. During oxidative stress, precisely these changes in calcium concentration are responsible for cell damage. We have examined the effects of oxidative stress conditions on the activity of PDE in rat brain homogenates. We found a different influence of activated lipid peroxidation conditions (Fe2+ with ascorbate and increased temperature) on the calcium-dependent and calcium-independent PDE activity. The inhibition of Ca2+-dependent PDE was observed, while Ca2+-independent PDE was not influenced. We assume that it might be the impact of lipid peroxidation products or any mechanism activated by the higher temperature on the interaction of the Ca2+-dependent isoform of PDE with the complex calcium-calmodulin. Another explanation might be that the formation of the functioning calcium-calmodulin complex is impossible in these conditions.


2015 ◽  
Vol 2015 ◽  
pp. 1-24 ◽  
Author(s):  
Mika Reinisalo ◽  
Anna Kårlund ◽  
Ali Koskela ◽  
Kai Kaarniranta ◽  
Reijo O. Karjalainen

Numerous studies have highlighted the key roles of oxidative stress and inflammation in aging-related diseases such as obesity, type 2 diabetes, age-related macular degeneration (AMD), and Alzheimer’s disease (AD). In aging cells, the natural antioxidant capacity decreases and the overall efficiency of reparative systems against cell damage becomes impaired. There is convincing data that stilbene compounds, a diverse group of natural defence phenolics, abundant in grapes, berries, and conifer bark waste, may confer a protective effect against aging-related diseases. This review highlights recent data helping to clarify the molecular mechanisms involved in the stilbene-mediated protection against oxidative stress. The impact of stilbenes on the nuclear factor-erythroid-2-related factor-2 (Nrf2) mediated cellular defence against oxidative stress as well as the potential roles of SQSTM1/p62 protein in Nrf2/Keap1 signaling and autophagy will be summarized. The therapeutic potential of stilbene compounds against the most common aging-related diseases is discussed.


2021 ◽  
Vol 2021 ◽  
pp. 1-23
Author(s):  
Jingwen Fan ◽  
Qi Pan ◽  
Qun Gao ◽  
Wenqing Li ◽  
Fei Xiao ◽  
...  

Subclinical hypothyroidism (SCH) is associated with diabetic peripheral neuropathy (DPN); however, the mechanism underlying this association remains unknown. This study is aimed at examining neurofunctional and histopathological alterations in a type 2 diabetes (T2DM) mouse model of SCH and investigating the impact of thyroid-stimulating hormone (TSH) in an in vitro DPN cell model established using RSC96 cells under high glucose (HG) and palmitic acid (PA) stimulation. Our results indicated that T2DM, in combination with SCH, aggravated abnormal glucose and lipid metabolism in T2DM and dramatically destroyed the peripheral nervous system by increasing paw withdrawal latency, decreasing motor nerve conduction velocity, and exacerbating ultrastructural deterioration of the damaged sciatic nerve caused by diabetes. Furthermore, the results of our in vitro experiments showed that TSH intensified HG/PA-induced RSC96 cell damage by inducing oxidative stress, mitochondrial dysfunction, and apoptosis. More importantly, TSHR knockout or inhibition of PA-induced TSHR palmitoylation could alleviate the apoptosis induced by TSH. Overall, in this study, the novel mechanisms by which TSH, as an independent risk factor for DPN progression, aggravating Schwann cell apoptosis and demyelination, are elucidated. These findings indicate that TSHR could be a potential target for both the prevention and treatment of DPN and, possibly, other microvascular diseases, and have implication in the clinical management of patients with DPN.


2020 ◽  
Vol 11 (9) ◽  
Author(s):  
Baochen Bai ◽  
Yanyan Yang ◽  
Qi Wang ◽  
Min Li ◽  
Chao Tian ◽  
...  

Abstract Inflammasomes are a class of cytosolic protein complexes. They act as cytosolic innate immune signal receptors to sense pathogens and initiate inflammatory responses under physiological and pathological conditions. The NLR-family pyrin domain-containing protein 3 (NLRP3) inflammasome is the most characteristic multimeric protein complex. Its activation triggers the cleavage of pro-interleukin (IL)-1β and pro-IL-18, which are mediated by caspase-1, and secretes mature forms of these mediators from cells to promote the further inflammatory process and oxidative stress. Simultaneously, cells undergo pro-inflammatory programmed cell death, termed pyroptosis. The danger signals for activating NLRP3 inflammasome are very extensive, especially reactive oxygen species (ROS), which act as an intermediate trigger to activate NLRP3 inflammasome, exacerbating subsequent inflammatory cascades and cell damage. Vascular endothelium at the site of inflammation is actively involved in the regulation of inflammation progression with important implications for cardiovascular homeostasis as a dynamically adaptable interface. Endothelial dysfunction is a hallmark and predictor for cardiovascular ailments or adverse cardiovascular events, such as coronary artery disease, diabetes mellitus, hypertension, and hypercholesterolemia. The loss of proper endothelial function may lead to tissue swelling, chronic inflammation, and the formation of thrombi. As such, elimination of endothelial cell inflammation or activation is of clinical relevance. In this review, we provided a comprehensive perspective on the pivotal role of NLRP3 inflammasome activation in aggravating oxidative stress and endothelial dysfunction and the possible underlying mechanisms. Furthermore, we highlighted the contribution of noncoding RNAs to NLRP3 inflammasome activation-associated endothelial dysfunction, and outlined potential clinical drugs targeting NLRP3 inflammasome involved in endothelial dysfunction. Collectively, this summary provides recent developments and perspectives on how NLRP3 inflammasome interferes with endothelial dysfunction and the potential research value of NLRP3 inflammasome as a potential mediator of endothelial dysfunction.


2021 ◽  
pp. 096032712199797
Author(s):  
YL Wang ◽  
Y Zhang ◽  
T Liu ◽  
J Cui

Myocardial ischemia is the main reason for ischemic heart diseases. Antioxidant treatment is considered as a possible approach to prevent myocardial ischemia injury, because oxidative stress is a key factor triggering it. This study was to investigate the protective effects of 3,5-dimethoxy-4-hydroxy myricanol (DHM) against oxidative stress-induced cytotoxicity on H9c2 cells and further explore its mechanisms. The oxidative stress and inflammatory response markers were detected by H2DCFDA fluorescent measurement, enzyme-linked immunosorbent assay (ELISA), real-time PCR and Western blot. Results showed DHM exerted inhibitory effects against H9c2 cell damage. Furthermore, DHM decreased oxidative stress in H9c2 cells through up-regulating protein expression of heme oxygenase-1 (HO-1) and nuclear factor (erythroid-derived 2)-like 2 (Nrf2). Moreover, DHM inhibited inflammatory responses through down-regulating the protein expression of mitogen-activated protein kinases (MAPKs) and nuclear factor kappa B (NF-κB). DHM exerted protective activities against oxidative stress-induced cell damage, at least through decreasing oxidative stress and inhibiting inflammatory responses, indicating that DHM have the potential to be developed as therapeutic agents for the treatment of myocardial ischemia.


Sign in / Sign up

Export Citation Format

Share Document