scholarly journals Plumbagin induces RPE cell cycle arrest and apoptosis via p38 MARK and PI3K/AKT/mTOR signaling pathways in PVR

Author(s):  
Haiting Chen ◽  
Huifang Wang ◽  
Jianbin An ◽  
Qingli Shang ◽  
Jingxue Ma
DNA Repair ◽  
2021 ◽  
Vol 98 ◽  
pp. 103047
Author(s):  
Fatemeh Sadoughi ◽  
Jamal Hallajzadeh ◽  
Zatollah Asemi ◽  
Mohammad Ali Mansournia ◽  
Forough Alemi ◽  
...  

Cells ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 681 ◽  
Author(s):  
Phuong Doan ◽  
Aliyu Musa ◽  
Akshaya Murugesan ◽  
Vili Sipilä ◽  
Nuno R. Candeias ◽  
...  

Cancer stem cells (CSCs), a small subpopulation of cells existing in the tumor microenvironment promoting cell proliferation and growth. Targeting the stemness of the CSC population would offer a vital therapeutic opportunity. 3,4-Dihydroquinolin-1(2H)-yl)(p-tolyl)methyl)phenol (THTMP), a small synthetic phenol compound, is proposed to play a significant role in controlling the CSC proliferation and survival. We assessed the potential therapeutic effects of THTMP on glioblastoma multiforme (GBM) and its underlying mechanism in various signaling pathways. To fully comprehend the effect of THTMP on the CSCs, CD133+ GBM stem cell (GSC) and CD133- GBM Non-stem cancer cells (NSCC) population from LN229 and SNB19 cell lines was used. Cell cycle arrest, apoptosis assay and transcriptome analysis were performed for individual cell population. THTMP strongly inhibited NSCC and in a subtle way for GSC in a time-dependent manner and inhibit the resistance variants better than that of temozolomide (TMZ). THTMP arrest the CSC cell population at both G1/S and G2/M phase and induce ROS-mediated apoptosis. Gene expression profiling characterize THTMP as an inhibitor of the p53 signaling pathway causing DNA damage and cell cycle arrest in CSC population. We show that the THTMP majorly affects the EGFR and CSC signaling pathways. Specifically, modulation of key genes involved in Wnt, Notch and Hedgehog, revealed the significant role of THTMP in disrupting the CSCs’ stemness and functions. Moreover, THTMP inhibited cell growth, proliferation and metastasis of multiple mesenchymal patient-tissue derived GBM-cell lines. THTMP arrests GBM stem cell cycle through the modulation of EGFR and CSC signaling pathways.


Nutrients ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 488 ◽  
Author(s):  
Yeong-Seon Won ◽  
Kwon-Il Seo

Prostate cancer is the most common cancer in Western countries. Recently, Asian countries are being affected by Western habits, which have had an important role in the rapid increase in cancer incidence. Sanggenol L (San L) is a natural flavonoid present in the root barks of Morus alba, which induces anti-cancer activities in ovarian cancer cells. However, the molecular and cellular mechanisms of the effects of sanggenol L on human prostate cancer cells have not been elucidated. In this study, we investigated whether sanggenol L exerts anti-cancer activity in human prostate cancer cells via apoptosis and cell cycle arrest. Sanggenol L induced caspase-dependent apoptosis (up-regulation of PARP and Bax or down-regulation of procaspase-3, -8, -9, Bid, and Bcl-2), induction of caspase-independent apoptosis (up-regulation of AIF and Endo G on cytosol), suppression of cell cycle (down-regulation of CDK1/2, CDK4, CDK6, cyclin D1, cyclin E, cyclin A, and cyclin B1 or up-regulation of p53 and p21), and inhibition of PI3K/Akt/mTOR signaling (down-regulation of PI3K, p-Akt, and p-mTOR) in prostate cancer cells. These results suggest the induction of apoptosis via suppression of PI3K/Akt/mTOR signaling and cell cycle arrest via activation of p53 in response to sanggenol L in prostate cancer cells.


KSBB Journal ◽  
2015 ◽  
Vol 30 (5) ◽  
pp. 223-229 ◽  
Author(s):  
Bo Min Kim ◽  
Guen Tae Kim ◽  
Eun Gyeong Lim ◽  
Eun Ji Kim ◽  
Sang Yong Kim ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document