Signaling pathways involved in cell cycle arrest during the DNA breaks

DNA Repair ◽  
2021 ◽  
Vol 98 ◽  
pp. 103047
Author(s):  
Fatemeh Sadoughi ◽  
Jamal Hallajzadeh ◽  
Zatollah Asemi ◽  
Mohammad Ali Mansournia ◽  
Forough Alemi ◽  
...  
Cells ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 681 ◽  
Author(s):  
Phuong Doan ◽  
Aliyu Musa ◽  
Akshaya Murugesan ◽  
Vili Sipilä ◽  
Nuno R. Candeias ◽  
...  

Cancer stem cells (CSCs), a small subpopulation of cells existing in the tumor microenvironment promoting cell proliferation and growth. Targeting the stemness of the CSC population would offer a vital therapeutic opportunity. 3,4-Dihydroquinolin-1(2H)-yl)(p-tolyl)methyl)phenol (THTMP), a small synthetic phenol compound, is proposed to play a significant role in controlling the CSC proliferation and survival. We assessed the potential therapeutic effects of THTMP on glioblastoma multiforme (GBM) and its underlying mechanism in various signaling pathways. To fully comprehend the effect of THTMP on the CSCs, CD133+ GBM stem cell (GSC) and CD133- GBM Non-stem cancer cells (NSCC) population from LN229 and SNB19 cell lines was used. Cell cycle arrest, apoptosis assay and transcriptome analysis were performed for individual cell population. THTMP strongly inhibited NSCC and in a subtle way for GSC in a time-dependent manner and inhibit the resistance variants better than that of temozolomide (TMZ). THTMP arrest the CSC cell population at both G1/S and G2/M phase and induce ROS-mediated apoptosis. Gene expression profiling characterize THTMP as an inhibitor of the p53 signaling pathway causing DNA damage and cell cycle arrest in CSC population. We show that the THTMP majorly affects the EGFR and CSC signaling pathways. Specifically, modulation of key genes involved in Wnt, Notch and Hedgehog, revealed the significant role of THTMP in disrupting the CSCs’ stemness and functions. Moreover, THTMP inhibited cell growth, proliferation and metastasis of multiple mesenchymal patient-tissue derived GBM-cell lines. THTMP arrests GBM stem cell cycle through the modulation of EGFR and CSC signaling pathways.


2019 ◽  
Vol 898 ◽  
pp. 120869 ◽  
Author(s):  
Jianfu Zhao ◽  
Xiang Zhang ◽  
Hongxing Liu ◽  
Zushuang Xiong ◽  
Meng Li ◽  
...  

Reproduction ◽  
2017 ◽  
Vol 153 (6) ◽  
pp. 725-735 ◽  
Author(s):  
Hermance Beaud ◽  
Ans van Pelt ◽  
Geraldine Delbes

Anticancer drugs, such as alkylating agents, can affect male fertility by targeting the DNA of proliferative spermatogonial stem cells (SSC). Therefore, to reduce such side effects, other chemotherapeutics are used. However, less is known about their potential genotoxicity on SSC. Moreover, DNA repair mechanisms in SSC are poorly understood. To model treatments deprived of alkylating agents that are commonly used in cancer treatment, we tested the impact of exposure to doxorubicin and vincristine, alone or in combination (MIX), on a rat spermatogonial cell line with SSC characteristics (GC-6spg). Vincristine alone induced a cell cycle arrest and cell death without genotoxic impact. On the other hand, doxorubicin and the MIX induced a dose-dependent cell death. More importantly, doxorubicin and the MIX induced DNA breaks, measured by the COMET assay, at a non-cytotoxic dose. To elucidate which DNA repair pathway is activated in spermatogonia after exposure to doxorubicin, we screened the expression of 75 genes implicated in DNA repair. Interestingly, all were expressed constitutively in GC-6spg, suggesting great potential to respond to genotoxic stress. Doxorubicin treatments affected the expression of 16 genes (>1.5 fold change;P < 0.05) involved in cell cycle, base/nucleotide excision repair, homologous recombination and non-homologous end joining (NHEJ). The significant increase in CDKN1A and XRCC1 suggest a cell cycle arrest and implies an alternative NHEJ pathway in response to doxorubicin-induced DNA breaks. Together, our results support the idea that undifferentiated spermatogonia have the ability to respond to DNA injury from chemotherapeutic compounds and escape DNA break accumulation.


2018 ◽  
Vol 19 (10) ◽  
pp. 3234 ◽  
Author(s):  
Justyna Kutkowska ◽  
Leon Strzadala ◽  
Andrzej Rapak

Pancreatic ductal adenocarcinoma (PDAC) is one of the most deadly cancers in the world due to late diagnosis and poor response to available treatments. It is important to identify treatment strategies that will increase the efficacy and reduce the toxicity of the currently used therapeutics. In this study, the PDAC cell lines AsPC-1, BxPC-3, and Capan-1 were treated with sorafenib and betulinic acid alone and in combination. We examined the effect of combined treatments on viability (MTS test), proliferation and apoptosis (annexin V staining), cell cycle arrest (PI staining), alterations in signaling pathways (Western blotting), and colony-forming ability. The combination of sorafenib with betulinic acid inhibited the viability and proliferation of PDAC cells without the induction of apoptosis. The antiproliferative effect, caused by G2 cell cycle arrest, was strongly associated with increased expression of p21 and decreased expression of c-Myc and cyclin D1, and was induced only by combined treatment. Additionally, decreased proliferation could also be associated with the inhibition of the P13K/Akt and MAPK signaling pathways. Importantly, combination treatment reduced the colony-forming ability of PDAC cells, as compared to both compounds alone. Collectively, we showed that combined treatment with low concentrations of sorafenib and betulinic acid had the capacity to inhibit proliferation and abolish clonogenic activity in PDAC cell lines.


Oncotarget ◽  
2016 ◽  
Vol 7 (16) ◽  
pp. 22409-22426 ◽  
Author(s):  
You-Cheng Hseu ◽  
Varadharajan Thiyagarajan ◽  
Hsiao-Tung Tsou ◽  
Kai-Yuan Lin ◽  
Hui-Jye Chen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document