scholarly journals Epimedium sagittatum inhibits TLR4/MD-2 mediated NF-κB signaling pathway with anti-inflammatory activity

Author(s):  
Ni Yan ◽  
Ding-Sheng Wen ◽  
Yue-Rui Zhao ◽  
Shun-Jun Xu
2020 ◽  
Vol 48 (02) ◽  
pp. 429-444
Author(s):  
Minkyeong Jo ◽  
Young-Su Yi ◽  
Jae Youl Cho

Pharmacological activities of some Leguminosae family members were reported. Pharmacological activities of Archidendron lucidum, a Leguminosae family member have never been explored. Therefore, this study investigated anti-inflammatory effects of an Archidendron lucidum methanol extract (Al-ME). In this study, anti-inflammatory effects of Al-ME were investigated in LPS-stimulated RAW264.7 cells and HCl/EtOH-induced gastritis mice by MTT assay, nitric oxide (NO) production assay, semi-quantitative reverse transcriptase-polymerase chain reaction (RT-PCR), luciferase reporter assay, and Western blotting. High-performance liquid chromatography (HPLC) analysis identified ethnopharmacological compounds in Al-ME. Al-ME inhibited NO production without cytotoxicity in peritoneal macrophages and RAW264.7 cells stimulated with LPS or Pam3CSK4. Al-ME downregulated mRNA expression of inflammatory genes (inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2)) and pro-inflammatory cytokines (tumor necrosis factor-[Formula: see text] (TNF-[Formula: see text]), interleukin-1[Formula: see text] (IL-1[Formula: see text]), and IL-6). Al-ME exerted anti-inflammatory activity in LPS-stimulated RAW264.7 cells by inhibiting nuclear factor-kappa B (NF-[Formula: see text]B) signaling pathway. HPLC analysis identified quercetin, luteolin, and kaempferol as major anti-inflammatory components in Al-ME. Al-ME ameliorated HCl/EtOH-induced gastritis symptoms in mice by suppressing iNOS and IL-6 mRNA expressions and I[Formula: see text]B[Formula: see text] phosphorylation. Therefore, these results suggest that Al-ME exhibited anti-inflammatory activity by targeting NF-[Formula: see text]B signaling pathway, implying that Al-ME could be potent anti-inflammatory medications to prevent and treat inflammatory diseases.


2018 ◽  
Vol 46 (06) ◽  
pp. 1281-1296 ◽  
Author(s):  
Sang Yun Han ◽  
Young-Su Yi ◽  
Seong-Gu Jeong ◽  
Yo Han Hong ◽  
Kang Jun Choi ◽  
...  

Lilium bulbs have long been used as Chinese traditional medicines to alleviate the symptoms of various human inflammatory diseases. However, mechanisms of Lilium bulb-mediated anti-inflammatory activity and the bioactive components in Lilium bulbs remain unknown. In the present study, the anti-inflammatory activity of Lilium bulbs and the underlying mechanism of action were investigated in macrophages using Lilium bulb ethanol extracts (Lb-EE). In a dose-dependent manner, Lb-EE inhibited nitric oxide (NO) production in lipopolysaccharide (LPS)-stimulated RAW264.7 cells and bone marrow-derived macrophages (BMDMs) without causing significant cytotoxicity. Lb-EE also down-regulated mRNA expression of inflammatory genes in LPS-stimulated RAW264.7 cells, which included inducuble nitric oxide synthase (iNOS), cyclooxygenase-2 (COX2), and tumor necrosis factor-[Formula: see text] (TNF-[Formula: see text]). Furthermore, Lb-EE markedly restored LPS-induced morphological changes in RAW264.7 cells to a normal morphology. HPLC analysis identified quercetin, luteolin, and kaempferol as bioactive components contained in Lb-EE. Mechanistic studies in LPS-stimulated RAW264.7 cells revealed that Lb-EE suppressed MyD88- and TRIF-induced NF-[Formula: see text]B transcriptional activation and the nuclear translocation of NF-[Formula: see text]B transcription factors. Moreover, Lb-EE inhibited IKK[Formula: see text]/[Formula: see text]-induced activation of the NF-[Formula: see text]B signaling pathway and IKK inhibition significantly reduced NO production in LPS-stimulated RAW264.7 cells. Taken together, these results suggest that Lb-EE plays an anti-inflammatory role by targeting IKK[Formula: see text]/[Formula: see text]-mediated activation of the NF-[Formula: see text]B signaling pathway during macrophage-mediated inflammatory responses.


2019 ◽  
Vol 39 (6) ◽  
Author(s):  
Xiaoliang Bai ◽  
Wenyuan Ding ◽  
Sidong Yang ◽  
Xiaohui Guo

Abstract Intervertebral disc degeneration (IDD) is a natural progression of the aging process associated with inflammation. Higenamine, a plant-based alkaloid, has been identified to possess various pharmacological properties, including anti-inflammatory activity. In the present study, we aimed to evaluate the role of higenamine in interleukin (IL)-1β-induced inflammation in human nucleus pulposus cells (NPCs). The results showed that higenamine improved cell viability in IL-1β-induced NPCs. The IL-1β-dependent up-regulation of inflammatory molecules including inducible nitric oxide synthase (iNOS), nitric oxide (NO), prostaglandin E2 (PGE2), cyclooxygenase-2 (COX-2), tumor necrosis factor alpha (TNF-α), and IL-6 was attenuated by higenamine in NPCs. The increased productions of matrix metalloproteinases (MMP-3 and MMP-13), as well as a disintegrin and metalloprotease with thrombospondin motifs (ADAMTS-4 and ADAMTS-5) were significantly mitigated by higenamine treatment. Furthermore, we also found that higenamine suppressed the IL-1β-induced activation of NF-κB signaling pathway in NPCs. In conclusion, the present study proved that higenamine exhibited anti-inflammatory activity against IL-1β-induced inflammation in NPCs via inhibiting NF-κB signaling pathway. These results suggested that higenamine might be a therapeutic agent for the treatment of IDD.


2015 ◽  
Vol 25 (1) ◽  
pp. 189-198 ◽  
Author(s):  
Megumi Funakoshi-Tago ◽  
Kazuhi Okamoto ◽  
Rika Izumi ◽  
Kenji Tago ◽  
Ken Yanagisawa ◽  
...  

2018 ◽  
Vol 51 (4) ◽  
pp. 1830-1838 ◽  
Author(s):  
Yanlong Qu ◽  
Chunlei Wang ◽  
Ning Liu ◽  
Chengzhe Gao ◽  
Fei Liu

Background/Aims: Osteoarthritis (OA) is a multifactorial disease that is associated with inflammation in joints. The purpose of the present study was to investigate the anti-inflammatory activity and mechanism of morin on human osteoarthritis chondrocytes stimulated by IL-1β. Methods: The levels of NO and PGE2 were measured by the Griess method and ELISA. The levels of MMP1, MMP3, and MMP13 were also measured by ELISA. Results: The results revealed that IL-1β significantly increased the production of NO, PGE2, MMP1, MMP3, and MMP13. Additionally, the increases were significantly attenuated by treatment with morin. Furthermore, IL-1β-induced NF-κB activation was suppressed by morin. In addition, the expression of Nrf2 and HO-1 were increased by morin and knockdown of Nrf2 could prevent the anti-inflammatory effects of morin. Conclusion: In conclusion, this study suggested that morin attenuated IL-1β-induced inflammation by activating the Nrf2 signaling pathway.


MedChemComm ◽  
2017 ◽  
Vol 8 (7) ◽  
pp. 1498-1504 ◽  
Author(s):  
Bo Li ◽  
Yongan Yang ◽  
Liuzeng Chen ◽  
Shichao Chen ◽  
Jing Zhang ◽  
...  

18α-GAMG exhibited strong anti-inflammatory activity through inhibiting the expression of iNOS, COX-2, and MAPKs, as well as activation of NF-κB.


Plants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 586
Author(s):  
Hyun Ji Eo ◽  
Jun Hyuk Jang ◽  
Gwang Hun Park

Berchemia floribunda (Wall.) Brongn. (BF), which belongs to Rhamnaceae, is a special plant of Anmyeon Island in Korea. BF has been reported to have antioxidant and whitening effects. However, the anti-inflammatory activity of BR has not been elucidated. In this study, we evaluated the anti-inflammatory effect of leaves (BR-L), branches (BR-B) and fruit (BR-F) extracted with 70% ethanol of BR and elucidated the potential signaling pathway in LPS-induced RAW264.7 cells. BR-L showed a strong anti-inflammatory activity through the inhibition of NO production. BR-L significantly suppressed the production of the pro-inflammatory mediators such as iNOS, COX-2, IL-1β, IL-6 and TNF-α in LPS-stimulated RAW264.7 cells. BR-L suppressed the degradation and phosphorylation of IκB-α, which contributed to the inhibition of p65 nuclear accumulation and NF-κB activation. BR-L obstructed the phosphorylation of MAPKs (ERK1/2, p38 and JNK) in LPS-stimulated RAW264.7 cells. Consequently, these results suggest that BR-L may have great potential for the development of anti-inflammatory drugs to treat acute and chronic inflammatory disorders.


Sign in / Sign up

Export Citation Format

Share Document