scholarly journals Text classification models for the automatic detection of nonmedical prescription medication use from social media

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Mohammed Ali Al-Garadi ◽  
Yuan-Chi Yang ◽  
Haitao Cai ◽  
Yucheng Ruan ◽  
Karen O’Connor ◽  
...  

Abstract Background Prescription medication (PM) misuse/abuse has emerged as a national crisis in the United States, and social media has been suggested as a potential resource for performing active monitoring. However, automating a social media-based monitoring system is challenging—requiring advanced natural language processing (NLP) and machine learning methods. In this paper, we describe the development and evaluation of automatic text classification models for detecting self-reports of PM abuse from Twitter. Methods We experimented with state-of-the-art bi-directional transformer-based language models, which utilize tweet-level representations that enable transfer learning (e.g., BERT, RoBERTa, XLNet, AlBERT, and DistilBERT), proposed fusion-based approaches, and compared the developed models with several traditional machine learning, including deep learning, approaches. Using a public dataset, we evaluated the performances of the classifiers on their abilities to classify the non-majority “abuse/misuse” class. Results Our proposed fusion-based model performs significantly better than the best traditional model (F1-score [95% CI]: 0.67 [0.64–0.69] vs. 0.45 [0.42–0.48]). We illustrate, via experimentation using varying training set sizes, that the transformer-based models are more stable and require less annotated data compared to the other models. The significant improvements achieved by our best-performing classification model over past approaches makes it suitable for automated continuous monitoring of nonmedical PM use from Twitter. Conclusions BERT, BERT-like and fusion-based models outperform traditional machine learning and deep learning models, achieving substantial improvements over many years of past research on the topic of prescription medication misuse/abuse classification from social media, which had been shown to be a complex task due to the unique ways in which information about nonmedical use is presented. Several challenges associated with the lack of context and the nature of social media language need to be overcome to further improve BERT and BERT-like models. These experimental driven challenges are represented as potential future research directions.

Author(s):  
Mohammed Al-Garadi ◽  
Yuan-Chi Yang ◽  
Haitao Cai ◽  
Yucheng Ruan ◽  
Karen O’Connor ◽  
...  

Abstract Background Prescription medication (PM) misuse/abuse has emerged as a national crisis in the United States, and social media has been suggested as a potential resource for performing active monitoring. However, automating a social media-based monitoring system is challenging—requiring advanced natural language processing (NLP) and machine learning methods. In this paper, we describe the development and evaluation of automatic text classification models for detecting self-reports of PM abuse from Twitter. Methods We experimented with state-of-the-art bi-directional transformer-based language models, which utilize tweet-level representations that enable transfer learning (e.g., BERT, RoBERTa, XLNet, AlBERT, and DistilBERT), proposed fusion-based approaches, and compared the developed models with several traditional machine learning, including deep learning, approaches. Using a public dataset, we evaluated the performances of the classifiers on their abilities to classify the non-majority “abuse/misuse” class. Results Our proposed fusion-based model performs significantly better than the best traditional model (F1-score [95% CI]: 0.67 [0.64–0.69] vs. 0.45 [0.42–0.48]). We illustrate, via experimentation using differing training set sizes, that the transformer-based models are more stable and require less annotated data compared to the other models. The significant improvements achieved by our best-performing classification model over past approaches makes it suitable for automated continuous monitoring of nonmedical PM use from Twitter. Conclusions BERT, BERT-like and fusion-based models not only outperform traditional machine learning and deep learning models, but also show substantial improvements over many years of past research on the topic of prescription medication misuse/abuse classification from social media, which had been shown to be a complex task due to the unique ways in which information about nonmedical use is presented. However, several challenges, such as lack of complete context and the nature of social media language, must be overcome to further improve BERT and BERT-like models despite their advantages over other approaches. These experimental driven challenges are represented as potential future research directions.


2021 ◽  
Author(s):  
Mohammed Al-Garadi ◽  
Yuan-Chi Yang ◽  
Haitao Cai ◽  
Yucheng Ruan ◽  
Karen O’Connor ◽  
...  

Abstract BackgroundPrescription medication (PM) misuse/abuse has emerged as a national crisis in the United States, and social media has been suggested as a potential resource for performing active monitoring. However, automating a social media-based monitoring system is challenging—requiring advanced natural language processing (NLP) and machine learning methods. In this paper, we describe the development and evaluation of automatic text classification models for detecting self-reports of PM abuse from Twitter.MethodsWe experimented with state-of-the-art bi-directional transformer-based language models, which utilize tweet-level representations that enable transfer learning (e.g., BERT, RoBERTa, XLNet, AlBERT, and DistilBERT), proposed fusion-based approaches, and compared the developed models with several traditional machine learning, including deep learning, approaches. Using a public dataset, we evaluated the performances of the classifiers on their abilities to classify the non-majority “abuse/misuse” class.ResultsOur proposed fusion-based model performs significantly better than the best traditional model (F1-score [95% CI]: 0.67 [0.64-0.69] vs. 0.45 [0.42-0.48]). We illustrate, via experimentation using differing training set sizes, that the transformer-based models are more stable and require less annotated data compared to the other models. The significant improvements achieved by our best-performing classification model over past approaches makes it suitable for automated continuous monitoring of nonmedical PM use from Twitter.ConclusionsBERT, BERT-like and fusion-based models not only outperform traditional machine learning and deep learning models, but also show substantial improvements over many years of past research on the topic of prescription medication misuse/abuse classification from social media, which had been shown to be a complex task due to the unique ways in which information about nonmedical use is presented. Several challenges, such as lack of complete context and the nature of social media language, need to be overcome to further improve BERT and BERT-like models. These experimental driven challenges are represented as potential future research directions.


2020 ◽  
Author(s):  
Ali Al-Garadi Mohammed ◽  
Yuan-Chi Yang ◽  
Haitao Cai ◽  
Yucheng Ruan ◽  
Karen O’Connor ◽  
...  

ABSTRACTPrescription medication (PM) misuse/abuse has emerged as a national crisis in the United States, and social media has been suggested as a potential resource for performing active monitoring. However, automating a social media-based monitoring system is challenging—requiring advanced natural language processing (NLP) and machine learning methods. In this paper, we describe the development and evaluation of automatic text classification models for detecting self-reports of PM abuse from Twitter. We experimented with state-of-the-art bi-directional transformer-based language models, which utilize tweet-level representations that enable transfer learning (e.g., BERT, RoBERTa, XLNet, AlBERT, and DistilBERT), proposed fusion-based approaches, and compared the developed models with several traditional machine learning, including deep learning, approaches. Using a public dataset, we evaluated the performances of the classifiers on their abilities to classify the non-majority “abuse/misuse” class. Our proposed fusion-based model performs significantly better than the best traditional model (F1-score [95% CI]: 0.67 [0.64-0.69] vs. 0.45 [0.42-0.48]). We illustrate, via experimentation using differing training set sizes, that the transformer-based models are more stable and require less annotated data compared to the other models. The significant improvements achieved by our best-performing classification model over past approaches makes it suitable for automated continuous monitoring of nonmedical PM use from Twitter.


Electronics ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1143
Author(s):  
Meshrif Alruily

Text classification is a prominent research area, gaining more interest in academia, industry and social media. Arabic is one of the world’s most famous languages and it had a significant role in science, mathematics and philosophy in Europe in the middle ages. During the Arab Spring, social media, that is, Facebook, Twitter and Instagram, played an essential role in establishing, running, and spreading these movements. Arabic Sentiment Analysis (ASA) and Arabic Text Classification (ATC) for these social media tools are hot topics, aiming to obtain valuable Arabic text insights. Although some surveys are available on this topic, the studies and research on Arabic Tweets need to be classified on the basis of machine learning algorithms. Machine learning algorithms and lexicon-based classifications are considered essential tools for text processing. In this paper, a comparison of previous surveys is presented, elaborating the need for a comprehensive study on Arabic Tweets. Research studies are classified according to machine learning algorithms, supervised learning, unsupervised learning, hybrid, and lexicon-based classifications, and their advantages/disadvantages are discussed comprehensively. We pose different challenges and future research directions.


2020 ◽  
Vol 12 (12) ◽  
pp. 228
Author(s):  
Peng Ce ◽  
Bao Tie

With continuous development of artificial intelligence, text classification has gradually changed from a knowledge-based method to a method based on statistics and machine learning. Among them, it is a very important and efficient way to classify text based on the convolutional neural network (CNN) model. Text data are a kind of sequence data, while time sequentiality of the general text data is relatively weak, so text classification is usually less relevant to the sequential structure of the full text. Therefore, CNN-based text classification has gradually become a research hotspot when dealing with issues of text classification. For machine learning, especially deep learning, model interpretability has increasingly become the focus of academic research and industrial applications, and also become a key issue for further development and application of deep learning technology. Therefore, we recommend using the backtracking analysis method to conduct in-depth research on deep learning models. This paper proposes an analysis method for interpretability of a CNN text classification model. The method proposed by us can perform multi-angle analysis on the discriminant results of multi-classified text and multi-label classification tasks through backtracking analysis on model prediction results. Finally, the analysis results of the model can be displayed using visualization technology from multiple dimensions based on interpretability. The representative data set IMDB (Internet Movie Database) in text classification is verified by examples, and the results show that the model can be effectively analyzed when using our method.


2021 ◽  
Vol 54 (3) ◽  
pp. 1-40
Author(s):  
Shervin Minaee ◽  
Nal Kalchbrenner ◽  
Erik Cambria ◽  
Narjes Nikzad ◽  
Meysam Chenaghlu ◽  
...  

Deep learning--based models have surpassed classical machine learning--based approaches in various text classification tasks, including sentiment analysis, news categorization, question answering, and natural language inference. In this article, we provide a comprehensive review of more than 150 deep learning--based models for text classification developed in recent years, and we discuss their technical contributions, similarities, and strengths. We also provide a summary of more than 40 popular datasets widely used for text classification. Finally, we provide a quantitative analysis of the performance of different deep learning models on popular benchmarks, and we discuss future research directions.


2020 ◽  
Author(s):  
Pathikkumar Patel ◽  
Bhargav Lad ◽  
Jinan Fiaidhi

During the last few years, RNN models have been extensively used and they have proven to be better for sequence and text data. RNNs have achieved state-of-the-art performance levels in several applications such as text classification, sequence to sequence modelling and time series forecasting. In this article we will review different Machine Learning and Deep Learning based approaches for text data and look at the results obtained from these methods. This work also explores the use of transfer learning in NLP and how it affects the performance of models on a specific application of sentiment analysis.


2020 ◽  
Vol 14 ◽  
Author(s):  
Meghna Dhalaria ◽  
Ekta Gandotra

Purpose: This paper provides the basics of Android malware, its evolution and tools and techniques for malware analysis. Its main aim is to present a review of the literature on Android malware detection using machine learning and deep learning and identify the research gaps. It provides the insights obtained through literature and future research directions which could help researchers to come up with robust and accurate techniques for classification of Android malware. Design/Methodology/Approach: This paper provides a review of the basics of Android malware, its evolution timeline and detection techniques. It includes the tools and techniques for analyzing the Android malware statically and dynamically for extracting features and finally classifying these using machine learning and deep learning algorithms. Findings: The number of Android users is expanding very fast due to the popularity of Android devices. As a result, there are more risks to Android users due to the exponential growth of Android malware. On-going research aims to overcome the constraints of earlier approaches for malware detection. As the evolving malware are complex and sophisticated, earlier approaches like signature based and machine learning based are not able to identify these timely and accurately. The findings from the review shows various limitations of earlier techniques i.e. requires more detection time, high false positive and false negative rate, low accuracy in detecting sophisticated malware and less flexible. Originality/value: This paper provides a systematic and comprehensive review on the tools and techniques being employed for analysis, classification and identification of Android malicious applications. It includes the timeline of Android malware evolution, tools and techniques for analyzing these statically and dynamically for the purpose of extracting features and finally using these features for their detection and classification using machine learning and deep learning algorithms. On the basis of the detailed literature review, various research gaps are listed. The paper also provides future research directions and insights which could help researchers to come up with innovative and robust techniques for detecting and classifying the Android malware.


2021 ◽  
Vol 40 (5) ◽  
pp. 9361-9382 ◽  
Author(s):  
Naeem Iqbal ◽  
Rashid Ahmad ◽  
Faisal Jamil ◽  
Do-Hyeun Kim

Quality prediction plays an essential role in the business outcome of the product. Due to the business interest of the concept, it has extensively been studied in the last few years. Advancement in machine learning (ML) techniques and with the advent of robust and sophisticated ML algorithms, it is required to analyze the factors influencing the success of the movies. This paper presents a hybrid features prediction model based on pre-released and social media data features using multiple ML techniques to predict the quality of the pre-released movies for effective business resource planning. This study aims to integrate pre-released and social media data features to form a hybrid features-based movie quality prediction (MQP) model. The proposed model comprises of two different experimental models; (i) predict movies quality using the original set of features and (ii) develop a subset of features based on principle component analysis technique to predict movies success class. This work employ and implement different ML-based classification models, such as Decision Tree (DT), Support Vector Machines with the linear and quadratic kernel (L-SVM and Q-SVM), Logistic Regression (LR), Bagged Tree (BT) and Boosted Tree (BOT), to predict the quality of the movies. Different performance measures are utilized to evaluate the performance of the proposed ML-based classification models, such as Accuracy (AC), Precision (PR), Recall (RE), and F-Measure (FM). The experimental results reveal that BT and BOT classifiers performed accurately and produced high accuracy compared to other classifiers, such as DT, LR, LSVM, and Q-SVM. The BT and BOT classifiers achieved an accuracy of 90.1% and 89.7%, which shows an efficiency of the proposed MQP model compared to other state-of-art- techniques. The proposed work is also compared with existing prediction models, and experimental results indicate that the proposed MQP model performed slightly better compared to other models. The experimental results will help the movies industry to formulate business resources effectively, such as investment, number of screens, and release date planning, etc.


Symmetry ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 556
Author(s):  
Thaer Thaher ◽  
Mahmoud Saheb ◽  
Hamza Turabieh ◽  
Hamouda Chantar

Fake or false information on social media platforms is a significant challenge that leads to deliberately misleading users due to the inclusion of rumors, propaganda, or deceptive information about a person, organization, or service. Twitter is one of the most widely used social media platforms, especially in the Arab region, where the number of users is steadily increasing, accompanied by an increase in the rate of fake news. This drew the attention of researchers to provide a safe online environment free of misleading information. This paper aims to propose a smart classification model for the early detection of fake news in Arabic tweets utilizing Natural Language Processing (NLP) techniques, Machine Learning (ML) models, and Harris Hawks Optimizer (HHO) as a wrapper-based feature selection approach. Arabic Twitter corpus composed of 1862 previously annotated tweets was utilized by this research to assess the efficiency of the proposed model. The Bag of Words (BoW) model is utilized using different term-weighting schemes for feature extraction. Eight well-known learning algorithms are investigated with varying combinations of features, including user-profile, content-based, and words-features. Reported results showed that the Logistic Regression (LR) with Term Frequency-Inverse Document Frequency (TF-IDF) model scores the best rank. Moreover, feature selection based on the binary HHO algorithm plays a vital role in reducing dimensionality, thereby enhancing the learning model’s performance for fake news detection. Interestingly, the proposed BHHO-LR model can yield a better enhancement of 5% compared with previous works on the same dataset.


Sign in / Sign up

Export Citation Format

Share Document