scholarly journals Ex vivo comparison of sliding knot ligatures vs. haemostatic clips for equine small intestinal mesenteric vessel occlusion

2020 ◽  
Vol 16 (1) ◽  
Author(s):  
Gessica Giusto ◽  
Marco Gandini
2021 ◽  
Vol 22 (2) ◽  
pp. 866
Author(s):  
Joie L. Behrens ◽  
Nadine Schnepel ◽  
Kathrin Hansen ◽  
Karin Hustedt ◽  
Marion Burmester ◽  
...  

The intestinal absorption of phosphate (Pi) takes place transcellularly through the active NaPi-cotransporters type IIb (NaPiIIb) and III (PiT1 and PiT2) and paracellularly by diffusion through tight junction (TJ) proteins. The localisation along the intestines and the regulation of Pi absorption differ between species and are not fully understood. It is known that 1,25-dihydroxy-vitamin D3 (1,25-(OH)2D3) and phosphorus (P) depletion modulate intestinal Pi absorption in vertebrates in different ways. In addition to the apical uptake into the enterocytes, there are uncertainties regarding the basolateral excretion of Pi. Functional ex vivo experiments in Ussing chambers and molecular studies of small intestinal epithelia were carried out on P-deficient goats in order to elucidate the transepithelial Pi route in the intestine as well as the underlying mechanisms of its regulation and the proteins, which may be involved. The dietary P reduction had no effect on the duodenal and ileal Pi transport rate in growing goats. The ileal PiT1 and PiT2 mRNA expressions increased significantly, while the ileal PiT1 protein expression, the mid jejunal claudin-2 mRNA expression and the serum 1,25-(OH)2D3 levels were significantly reduced. These results advance the state of knowledge concerning the complex mechanisms of the Pi homeostasis in vertebrates.


2018 ◽  
Vol 25 (4) ◽  
pp. 471-480
Author(s):  
Kosmas Daskalakis ◽  
Olov Norlén ◽  
Andreas Karakatsanis ◽  
Per Hellman ◽  
Rolf Larsson ◽  
...  

Small intestinal neuroendocrine tumors (SI-NETs) are generally considered resistant to systemic treatment. To date, predictive markers for drug activity are lacking. Tumor samples from 27 patients with SI-NETs were analyzed ex vivo for sensitivity to a panel of cytotoxic drugs and targeted agents using a short-term total cell kill assay. Samples of renal cancer, colorectal cancer (CRC), ovarian cancer and chronic lymphocytic leukemia (CLL) were included for comparison. For the SI-NET subset, drug sensitivity was analyzed in relation to clinicopathological variables and pre-treatment biomarkers. For cytotoxic drugs, SI-NETs demonstrated similar or higher sensitivity to 5-FU, platinum, gemcitabine and doxorubicin compared with CRC. For several of the targeted kinase inhibitors, SI-NET was among the most sensitive solid tumor types. CLL and ovarian cancer were generally the most sensitive tumor types to both cytotoxic drugs and protein kinase inhibitors. SI-NET was more sensitive to the mTOR inhibitor sirolimus than the other solid tumor types tested. Individual SI-NET samples demonstrated great variability in ex vivo sensitivity for most drugs. Cross-resistance between different drugs also varied considerably, being higher among protein kinase inhibitors. Age, stage, grade, peritoneal carcinomatosis and extra-abdominal metastases as well as serum chromogranin A and urine 5-HIAA concentrations at diagnosis did not correlate to drug sensitivity ex vivo. SI-NETs exhibit intermediate sensitivity ex vivo to cytotoxic and targeted drugs. Clinicopathological factors and currently used biomarkers are not clearly associated to ex vivo sensitivity, challenging these criteria for treatment decisions in SI-NET. The great variability in drug sensitivity calls for individualized selection of therapy.


2021 ◽  
Author(s):  
Kyung Ku Jang ◽  
Maria E Kaczmarek ◽  
Simone Dallari ◽  
Ying-Han Chen ◽  
Jordan Axelrad ◽  
...  

Organoids generated from primary human specimens facilitate investigation of the intestinal barrier by recreating the complex cellular composition of the epithelium. Although the significance remains unclear, intestinal organoid lines display heterogeneity in their growth and morphology. We hypothesized that organoids will also display variability in the degree to which they are susceptible to infectious agents. Using SARS-CoV-2 as a model, we found orders of magnitude differences in the amount of SARS-CoV-2 recovered from small intestinal and colonic organoids generated from different donors. SARS-CoV-2 burden did not correlate with demographic or clinical features associated with donors, but rather reflected the expression level of the virus receptor ACE2. Remarkably, organoid ACE2 transcript levels matched the amount of ACE2 detected in primary tissue from the same individual, indicating that certain properties of the intestinal epithelium are retained during ex vivo differentiation. Longitudinal transcriptomics of organoids identified a delayed yet robust interferon signature, the magnitude of which corresponded to the degree of SARS-CoV-2 infection. These results suggest that intestinal organoids display substantial heterogeneity in their ability to support viral infections and can potentially inform mechanisms behind interindividual differences in susceptibility to infectious disease.


2017 ◽  
Vol 37 (suppl_1) ◽  
Author(s):  
Reheman Adili ◽  
Katherine Mast ◽  
Michael Holinstat

12-lipoxygenase (12-LOX) has been demonstrated to regulate platelet function, hemostasis, and thrombosis ex vivo , supporting a key role for 12-LOX in regulation of in vivo thrombosis. While pharmacologically targeting 12-LOX in vivo has been a challenge to date, the recent development of the 12-LOX selective inhibitor, ML355, as an effective antiplatelet therapeutic in vivo was assessed. ML355 potently inhibited thrombin and other agonist-induced platelet aggregation ex vivo in washed human platelets and inhibited downstream oxylipin production of platelet 12-LOX as confirmed by Mass spectrometry analysis. Ex vivo flow chamber assays confirmed that human platelet adhesion and thrombus formation at arterial shear over collagen was attenuated in human whole blood treated with ML355 to a greater extent compared to aspirin. In vivo , PK assessment of ML355 showed reasonable 12-LOX plasma levels 12 hours following administration of ML355. FeCl 3 -induced injury of the mesenteric arterioles resulted in less stable thrombi in 12-LOX -/- mice and ML355-treated WT mice resulting in impairment of vessel occlusion. Additionally, ML355 dose-dependently inhibited laser-induced thrombus formation in the cremaster arteriole thrombosis model in WT, but not in 12-LOX -/- mice. Importantly, hemostatic plug formation and bleeding following treatment with ML355 were not affected in response to laser ablation on the saphenous vein or in a cremaster microvasculature laser-induced rupture model. Our data strongly supports 12-LOX as a key determinant of platelet reactivity in vivo and inhibition of platelet 12-LOX with ML355 may represent a new class of antiplatelet therapeutics.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 3442-3442 ◽  
Author(s):  
Reheman Adili ◽  
Theodore R Holman ◽  
Michael Holinstat

Abstract Background: Adequate platelet reactivity is required for platelet adhesion and aggregation at the site of vascular injury to maintain hemostasis. However, excessive platelet reactivity can also lead to the formation of occlusive thrombi, the predominate underlying cause of myocardial infarction and stroke. While current anti-platelet treatments limit platelet function, they often result in an increased risk of bleeding. 12-lipoxygenase (12-LOX), an oxygenase highly expressed in the platelet, has been demonstrated by our lab and others to regulate PAR4 and GPVI-mediated platelet reactivity suggesting a role of 12-LOX in regulation of vivo thrombosis. However, the ability to pharmacologically target 12-LOX in vivo has not been established to date. Aims: To determine how 12-LOX regulates thrombus formation in vivo and whether platelet 12-LOX is an effective target for anti-platelet therapeutics, wild-type (WT) or 12-LOX deficient (12-LOX-/-) mice were treated with or without the 12-LOX inhibitor, ML355, and were assessed for inhibitory effects on platelet activation in vitro, ex-vivo and in vivo. Methods: The effect of the novel 12-LOX inhibitor ML355 on human platelet function was assessed in vitro by platelet aggregometry, ex vivo by perfusion chamber. In vivo thrombus formation and vessel occlusion in small and large vessels were studied in 12-LOX-/-, WT mice and mice treated with ML355 using intravital microscopy using the FeCl3 injury models. Results: Using in vitro platelet aggregation assays, ML355 dose dependently inhibited thrombin, PAR1-AP, and PAR4-AP-induced aggregation in washed human platelets. Interestingly, the negative regulatory effects of ML355 inhibition of 12-LOX can be overcome by high concentration of thrombin. Additionally, ML355 was able to attenuate ADP-induced platelet aggregation both in platelet-rich-plasma and whole blood. In ex vivo flow chamber assays, platelet adhesion and thrombus formation on collagen-coated surfaces at high shear was attenuated in both mouse and human whole blood after incubation with ML355. Further, platelet aggregation and thrombus growth in 12-LOX-/- mice was impaired in FeCl3-induced mesenteric or carotid artery thrombosis models. Thrombi in 12-LOX-/- mice were unstable and frequently form emboli, which resulted in impaired vessel occlusion or reopening. Additionally, thrombus formation and vessel occlusion was impaired in ML355 treated WT mice. Conclusions: The highly selective 12-LOX inhibitor ML355 inhibits platelets aggregation induced by various platelet agonists and ML355 inhibition of platelet function is not agonist specific. Platelet function at high shear in ex vivo conditions in both mice and human was attenuated in the presence of ML355. Thrombus growth, stability, and vessel occlusion was impaired in mice deficient for 12-LOX. Finally, the highly selective 12-LOX inhibitor ML355 attenuates thrombus formation and prevents vessel occlusion in vivo. Our data strongly indicates 12- LOX is an important determinant of platelet reactivity and inhibition of platelet 12-LOX may represent a new target for anti-platelet therapeutics. Disclosures No relevant conflicts of interest to declare.


mBio ◽  
2014 ◽  
Vol 5 (5) ◽  
Author(s):  
John C. Freedman ◽  
Jihong Li ◽  
Francisco A. Uzal ◽  
Bruce A. McClane

ABSTRACTEpsilon toxin (ETX), a pore-forming toxin produced by type B and D strains ofClostridium perfringens, mediates severe enterotoxemia in livestock and possibly plays a role in human disease. During enterotoxemia, the nearly inactive ETX prototoxin is produced in the intestines but then must be activated by proteolytic processing. The current study sought to examine ETX prototoxin processing and activationex vivousing the intestinal contents of a goat, a natural host species for ETX-mediated disease. First, this study showed that the prototoxin has a KEIS N-terminal sequence with a molecular mass of 33,054 Da. When the activation of ETX prototoxinex vivoby goat small intestinal contents was assessed by SDS-PAGE, the prototoxin was processed in a stepwise fashion into an ~27-kDa band or higher-molecular-mass material that could be toxin oligomers. Purified ETX corresponding to the ~27-kDa band was cytotoxic. When it was biochemically characterized by mass spectrometry, the copresence of three ETX species, each with different C-terminal residues, was identified in the purified ~27-kDa ETX preparation. Cytotoxicity of each of the three ETX species was then demonstrated using recombinant DNA approaches. Serine protease inhibitors blocked the initial proteotoxin processing, while carboxypeptidase inhibitors blocked further processing events. Taken together, this study provides important new insights indicating that, in the intestinal lumen, serine protease (including trypsin and possibly chymotrypsin) initiates the processing of the prototoxin but other proteases, including carboxypeptidases, then process the prototoxin into multiple active and stable species.IMPORTANCEProcessing and activation by intestinal proteases is a prerequisite for ETX-induced toxicity. Previous studies had characterized the activation of ETX using only arbitrarily chosen amounts of purified trypsin and/or chymotrypsin. Therefore, the current study examined ETX activationex vivoby natural host intestinal contents. These analyses demonstrated that (i) ETX processing in host intestinal contents occurs in an ordered, stepwise fashion, (ii) processing of prototoxin by host intestinal contents results in higher-molecular-mass material and 3 distinct ~27-kDa ETX species, and (iii) serine proteases, such as trypsin, chymotrypsin, and other proteases, including carboxypeptidases, play a role in the activation of ETX by intestinal contents. These studies provide new insights into the activation and processing of ETX and demonstrate that this process is more complicated than previously appreciated.


Sign in / Sign up

Export Citation Format

Share Document