scholarly journals SLIMEr: probing flexibility of lipid metabolism in yeast with an improved constraint-based modeling framework

2019 ◽  
Vol 13 (1) ◽  
Author(s):  
Benjamín J. Sánchez ◽  
Feiran Li ◽  
Eduard J. Kerkhoven ◽  
Jens Nielsen
2018 ◽  
Author(s):  
Benjamín J. Sánchez ◽  
Feiran Li ◽  
Eduard J. Kerkhoven ◽  
Jens Nielsen

SummaryA recurrent problem in genome-scale metabolic models (GEMs) is to correctly represent lipids as biomass requirements, due to the numerous of possible combinations of individual lipid species and the corresponding lack of fully detailed data. In this study we present SLIMEr, a formalism for correctly representing lipid requirements in GEMs using commonly available experimental data. SLIMEr enhances a GEM with mathematical constructs where we Split Lipids Into Measurable Entities (SLIME reactions), in addition to constraints on both the lipid classes and the acyl chain distribution. By implementing SLIMEr on the consensus GEM of Saccharomyces cerevisiae, we can predict accurate amounts of lipid species, analyze the flexibility of the resulting distribution, and compute the energy costs of moving from one metabolic state to another. The approach shows potential for better understanding lipid metabolism in yeast under different conditions. SLIMEr is freely available at https://github.com/SysBioChalmers/SLIMEr.


2019 ◽  
Author(s):  
Lin Liu ◽  
Alexander Bockmayr

AbstractIntegrated modeling of metabolism and gene regulation continues to be a major challenge in computational biology. While there exist approaches like regulatory flux balance analysis (rFBA), dynamic flux balance analysis (dFBA), resource balance analysis (RBA) or dynamic enzyme-cost flux balance analysis (deFBA) extending classical flux balance analysis (FBA) in various directions, there have been no constraint-based methods so far that allow predicting the dynamics of metabolism taking into account both macromolecule production costs and regulatory events.In this paper, we introduce a new constraint-based modeling framework named regulatory dynamic enzyme-cost flux balance analysis (r-deFBA), which unifies dynamic modeling of metabolism, cellular resource allocation and transcriptional regulation in a hybrid discrete-continuous setting.With r-deFBA, we can predict discrete regulatory states together with the continuous dynamics of reaction fluxes, external substrates, enzymes, and regulatory proteins needed to achieve a cellular objective such as maximizing biomass over a time interval. The dynamic optimization problem underlying r-deFBA can be reformulated as a mixed-integer linear optimization problem, for which there exist efficient solvers.


2018 ◽  
Vol 46 (2) ◽  
pp. 249-260 ◽  
Author(s):  
Martin H. Rau ◽  
Ahmad A. Zeidan

Genome-scale metabolic network reconstruction offers a means to leverage the value of the exponentially growing genomics data and integrate it with other biological knowledge in a structured format. Constraint-based modeling (CBM) enables both the qualitative and quantitative analyses of the reconstructed networks. The rapid advancements in these areas can benefit both the industrial production of microbial food cultures and their application in food processing. CBM provides several avenues for improving our mechanistic understanding of physiology and genotype–phenotype relationships. This is essential for the rational improvement of industrial strains, which can further be facilitated through various model-guided strain design approaches. CBM of microbial communities offers a valuable tool for the rational design of defined food cultures, where it can catalyze hypothesis generation and provide unintuitive rationales for the development of enhanced community phenotypes and, consequently, novel or improved food products. In the industrial-scale production of microorganisms for food cultures, CBM may enable a knowledge-driven bioprocess optimization by rationally identifying strategies for growth and stability improvement. Through these applications, we believe that CBM can become a powerful tool for guiding the areas of strain development, culture development and process optimization in the production of food cultures. Nevertheless, in order to make the correct choice of the modeling framework for a particular application and to interpret model predictions in a biologically meaningful manner, one should be aware of the current limitations of CBM.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Marie Schöpping ◽  
Paula Gaspar ◽  
Ana Rute Neves ◽  
Carl Johan Franzén ◽  
Ahmad A. Zeidan

AbstractAlthough bifidobacteria are widely used as probiotics, their metabolism and physiology remain to be explored in depth. In this work, strain-specific genome-scale metabolic models were developed for two industrially and clinically relevant bifidobacteria, Bifidobacterium animalis subsp. lactis BB-12® and B. longum subsp. longum BB-46, and subjected to iterative cycles of manual curation and experimental validation. A constraint-based modeling framework was used to probe the metabolic landscape of the strains and identify their essential nutritional requirements. Both strains showed an absolute requirement for pantethine as a precursor for coenzyme A biosynthesis. Menaquinone-4 was found to be essential only for BB-46 growth, whereas nicotinic acid was only required by BB-12®. The model-generated insights were used to formulate a chemically defined medium that supports the growth of both strains to the same extent as a complex culture medium. Carbohydrate utilization profiles predicted by the models were experimentally validated. Furthermore, model predictions were quantitatively validated in the newly formulated medium in lab-scale batch fermentations. The models and the formulated medium represent valuable tools to further explore the metabolism and physiology of the two species, investigate the mechanisms underlying their health-promoting effects and guide the optimization of their industrial production processes.


Author(s):  
Sidney D. Kobernick ◽  
Edna A. Elfont ◽  
Neddra L. Brooks

This cytochemical study was designed to investigate early metabolic changes in the aortic wall that might lead to or accompany development of atherosclerotic plaques in rabbits. The hypothesis that the primary cellular alteration leading to plaque formation might be due to changes in either carbohydrate or lipid metabolism led to histochemical studies that showed elevation of G-6-Pase in atherosclerotic plaques of rabbit aorta. This observation initiated the present investigation to determine how early in plaque formation and in which cells this change could be observed.Male New Zealand white rabbits of approximately 2000 kg consumed normal diets or diets containing 0.25 or 1.0 gm of cholesterol per day for 10, 50 and 90 days. Aortas were injected jin situ with glutaraldehyde fixative and dissected out. The plaques were identified, isolated, minced and fixed for not more than 10 minutes. Incubation and postfixation proceeded as described by Leskes and co-workers.


2001 ◽  
Vol 120 (5) ◽  
pp. A546-A546
Author(s):  
D SWARTZBASILE ◽  
M GOLDBLATT ◽  
C SVATEK ◽  
M WALTERS ◽  
S CHOI ◽  
...  

2007 ◽  
Author(s):  
S. G. Tsikunov ◽  
A. G. Pshenichnaya ◽  
A. G. Kusov ◽  
N. N. Klyueva

Sign in / Sign up

Export Citation Format

Share Document