scholarly journals Histone deacetylase 7 mediates endothelin-1-induced connective tissue growth factor expression in human lung fibroblasts through p300 and activator protein-1 activation

2021 ◽  
Vol 28 (1) ◽  
Author(s):  
Hung-Sheng Hua ◽  
Heng-Ching Wen ◽  
Chih-Ming Weng ◽  
Hong-Sheng Lee ◽  
Bing-Chang Chen ◽  
...  

Abstract Background Histone deacetylase (HDAC) inhibition was reported to ameliorate lung fibrosis in animal models. However, little is known about the underlying mechanism of HDAC7 in the regulation of CTGF production in lung fibroblasts. Methods The role of HDAC7 in CTGF production caused by ET-1 stimulation in WI-38 cells (human lung fibroblast) was examined. We also evaluated the expression of HDAC7 in the lung of ovalbumin-induced airway fibrosis model. Statistical data were shown as mean ± standard error. Results ET-1-stimulated CTGF and α-SMA expression was attenuated by small interfering (si)RNA interference of HDAC7. ET-1 promoted HDAC7 translocation from the cytosol to nucleus. ET-1-stimulated CTGF expression was reduced by the transfection of p300 siRNA. ET-1 induced an increase in p300 activity. Furthermore, the acetylation of c-Jun was time-dependently induced by ET-1 stimulation, which was reduced by transfection of either HDAC7 or p300 siRNA. Both transfection of HDAC7 and p300 siRNA suppressed the ET-1-increased activity of AP-1-luciferase. Moreover, the presence of HDAC7 was required for ET-1-stimulated formation of HDAC7, p300, and AP-1 complex and recruitment to the CTGF promoter region. In an ovalbumin-induced airway fibrosis model, the protein level of HDAC7 was increased in the lung tissue, and the distribution of HDAC7 was colocalized with α-SMA-positive cells in the subepithelial layer of the airway. Conclusions ET-1 activates HDAC7 to initiate AP-1 transcriptional activity by recruiting p300 and eventually promotes the production of CTGF. HDAC7 might play a vital role in airway fibrosis and have the potential to be developed as a therapeutic target.

1996 ◽  
Vol 270 (1) ◽  
pp. L159-L163 ◽  
Author(s):  
M. J. Thomassen ◽  
J. M. Antal ◽  
B. P. Barna ◽  
L. T. Divis ◽  
D. P. Meeker ◽  
...  

The initial inflammatory event in the adult respiratory distress syndrome (ARDS) is followed by fibroproliferation and a cascade of fibroblast-derived mediators. Because lung fibroblasts may be exposed to surfactant as well as inflammatory cytokines during ARDS, we hypothesized that surfactant might modulate fibroblast activity. We previously demonstrated that surfactant inhibited production of inflammatory cytokines from endotoxin-stimulated human alveolar macrophages. In the current study the effects of surfactant on normal human lung fibroblast proliferative capacity and mediator production were examined. Both synthetic (Exosurf) and natural (Survanta) surfactant inhibited fibroblast [3H]thymidine incorporation. Examination of pre-S-phase events indicated stimulation of the immediate response gene, c-fos, and no effect on the G1/S cyclin, cyclin D1, suggesting that the surfactant block occurred elsewhere before S phase. The antioxidant N-acetyl-L-cysteine (NAC), like surfactant, inhibited [3H]thymidine incorporation. Furthermore, menadione, a generator of intracellular H2O2, stimulated fibroblast [3H]thymidine incorporation, and this was inhibited by surfactant. Interleukin-1 (IL-1)-stimulated secretion of the inflammatory mediators, IL-6 and prostaglandin E2, was also inhibited by surfactant. These data suggest that surfactant may modify lung fibroblast participation in ARDS sequelae by downregulating DNA synthesis and secondary inflammatory mediator production.


2001 ◽  
Vol 280 (6) ◽  
pp. L1189-L1195 ◽  
Author(s):  
Takeo Ishii ◽  
Takeshi Matsuse ◽  
Hiroko Igarashi ◽  
Michiaki Masuda ◽  
Shinji Teramoto ◽  
...  

Cigarette smoking is thought to be a major risk factor in various lung diseases including lung cancer and emphysema. However, the direct effect of cigarette smoke on the viability of lung-derived cells has not been fully elucidated. In this study, we investigated the viability of human lung fibroblast-derived (HFL1) cells to different concentrations of cigarette smoke extract (CSE). CSE induced apoptosis at lower concentrations (10–25%) and necrosis at higher concentrations (50–100%). We also examined the effects of glutathione S-transferase P1 (GSTP1), one of the xenobiotic metabolizing and antioxidant enzymes in the lung, against the cytotoxicity of CSE. Our results indicated that the level of HFL1 cell death was decreased by transfection with a GSTP1 expression vector and was increased by GSTP1 antisense vector transfection. Therefore, transient overexpression and underexpression of GSTP1 appeared to inhibit and enhance the cytotoxic effects of CSE on HFL1 cells, suggesting that GSTP1 may have protective effects against cigarette smoke in the airway cells.


2020 ◽  
Author(s):  
Sunhwa Kim ◽  
Ashmita Saigal ◽  
Weilong Zhao ◽  
Peyvand Amini ◽  
Alex M. Tamburino ◽  
...  

AbstractIdiopathic pulmonary fibrosis (IPF) is an irreversible and progressive fibrotic lung disease. Advanced IPF patients often demonstrate pulmonary hypertension, which severely impairs patients’ quality of life. The critical physiological roles of soluble guanylate cyclase (sGC)-cyclic guanosine monophosphate (cGMP) pathway have been well characterized in vasodilation and the corresponding therapies and pathway agonists have shown clinical benefits in treating hypertension. In recent years, many preclinical studies have demonstrated anti-fibrotic efficacy of sGC-cGMP activation in various experimental fibrosis models but the molecular basis of the efficacy in these models are not well understood. Also, sGC pathway agonism has demonstrated encouraging clinical benefits in advanced IPF patients (NCT00517933). Here, we have revealed the novel phosphorylation events downstream of sGC activation in human lung fibroblasts using phosphoproteomics. sGCact A, a potent and selective sGC activator, significantly attenuated more than 2,000 phosphorylation sites. About 20% of phosphorylation events, attenuated by transforming growth factor β (TGFβ), a master regulator of fibrosis, were further dysregulated in the sGCact A co-treated lung fibroblasts. The overall magnitude and diversity of the sGCact A phosphoproteome was extensive. Further investigation would be required to understand how these newly identified changes facilitate human pulmonary fibrosis.


2000 ◽  
Vol 278 (1) ◽  
pp. L13-L18 ◽  
Author(s):  
Hiroyuki Miki ◽  
Tadashi Mio ◽  
Sonoko Nagai ◽  
Yuma Hoshino ◽  
Takeo Tsutsumi ◽  
...  

Fibroblast contractility plays a useful role in the wound healing process but contributes to architectural distortion in the lungs. Glucocorticoids (GCs) have been reported to reduce dermal fibroblast contractility, which may result in delaying wound healing, but the effects on lung fibroblasts are unknown. In this study, we examined how human lung fibroblast contractility is altered in the presence of GCs. Lung fibroblast cell lines ( n = 5) were established from normal parts of surgically resected lung tissue. The effects of GCs on contractility were investigated with a type I collagen gel contraction assay. Filamentous actin (F-actin) content was detected by confocal microscopy and measured with a fluorescent phalloidin binding assay. GCs augmented fibroblast contraction in a concentration-dependent manner, with an approximate EC50 of 1.8 × 10−8 M, whereas other steroid derivatives had no effects. GC contractility needed de novo protein synthesis. The GC-induced increase in contractility was found to be consistent with an increase in F-actin content. In conclusion, lung fibroblast contractility was enhanced with GCs through an upregulation of lung fibroblast F-actin.


2008 ◽  
Vol 295 (4) ◽  
pp. L624-L636 ◽  
Author(s):  
Carolyn J. Baglole ◽  
Patricia J. Sime ◽  
Richard P. Phipps

Fibroblasts are key structural cells that can be damaged by cigarette smoke. Cigarette smoke contains many components capable of eliciting oxidative stress, which may induce heme oxygenase (HO)-1, a cytoprotective enzyme. There are no data on HO-1 expression in primary human lung fibroblasts after cigarette smoke extract (CSE) exposure. We hypothesized that human lung fibroblasts exposed to cigarette smoke would increase HO-1 though changes in intracellular glutathione (GSH). Primary human lung fibroblasts were exposed to CSE, and changes in HO-1 expression and GSH levels were assessed. CSE induced a time- and dose-dependent increase in expression of HO-1, but not HO-2 or biliverdin reductase, in two different primary human lung fibroblast strains, a novel finding. This induction of HO-1 paralleled a decrease in intracellular GSH, and a sustained reduction in GSH resulted in a dramatic increase in HO-1. Treatment with the antioxidants N-acetyl-l-cysteine or GSH reduced the expression of HO-1 induced by CSE. We also examined the signal transduction mechanism responsible for HO-1 induction. Nuclear factor erythroid-derived 2, like 2 (Nrf2) was not involved in HO-1 induction by CSE. Activator protein-1 (AP-1) is a redox-sensitive transcription factor shown in other systems to regulate HO-1 expression. CSE exposure resulted in nuclear accumulation of c-Fos and c-Jun, two key AP-1 components. Reduction of c-Fos and c-Jun nuclear translocation by SP-600125 attenuated the CSE-induced expression of HO-1. These data support the concept that changes in the cellular redox status brought on by cigarette smoke induce HO-1 in fibroblasts. This increase in HO-1 may help protect against cigarette smoke-induced inflammation and/or cell death.


2000 ◽  
Vol 9 (3-4) ◽  
pp. 155-160 ◽  
Author(s):  
Masahiro Sasaki ◽  
Masayuki Kashima ◽  
Takefumi Ito ◽  
Akiko Watanabe ◽  
Noriko Izumiyama ◽  
...  

Fibroblast migration, proliferation, extracellular matrix protein synthesis and degradation,all of which play important roles in inflammation, are them selves induced by various growth factors and cytokines. Less is known about the interaction of these substances on lung fibroblast function in pulmonary fibrosis.The goal of this study was to investigate the effects of PDGF alone and in combination with IL–1β and TNF–α on the production of human lung fibroblast matrix metalloproteinases, proliferation, and the chemotactic response. The assay for MMPs activity against FITC labeled type I and IV collagen was based on the specificity of the enzyme cleavage of collagen. Caseinolytis and gelatinolytic activities of secreted proteinases were analyzed by zymography. Fibronectin in conditioned media was measured using human lung fibronectin enzyme immunoassay. Cell proliferation was measured by 3H-Thymidine incorporation assay. Cell culture supernatants were tested for PGE2 content by ELISA. Chemotactic activity was measured using the modified Boyden chamber.Matrix metalloproteinase assay indicated that IL–1β, TNF–α and PDGF induced intestitial collagenase (MMP-1) production. MMP assay also indicated that IL–1β and TNF–α had inhibitory effects on MMP-2,9(gelatinaseA,B) production. Casein zymography confirmed that IL–1β stimulated stromlysin (matrix metalloproteinase 3; MMP–3) and gelatin zymography demonstrated that TNF–α induced MMP–9 production in human lung fibroblast, whereas PDGF alone did not. PDGF in combination with IL–1β and TNF–α induced MMP–3 and MMP–9 activity, as demonstrated by zymography. PDGF stimulated lung fibroblast proliferation in a concentration-dependent manner, whereas IL–1β and TNF–α alone had no effect. In contrast, the proliferation of human lung fibroblasts by PDGF was inhibited in the presence of IL–1β and TNF–α, and this inhibition was not a consequence of any elevation of PGE2. PDGF stimulated fibroblast chemotaxis in a concentrationdependent manner, and this stimulation was augmented by combining PDGF with IL–1β and TNF–α.These findings suggested that PDGF differentially regulated MMPs production in combination with cytokines, and further that MMP assay and zymography had differential sensitivity for detecting MMPs. The presence of cytokines with PDGF appears to modulate the proliferation and chemotaxis of human lung fibroblasts.


Sign in / Sign up

Export Citation Format

Share Document