scholarly journals A novel method for extracting nucleic acids from dried blood spots for ultrasensitive detection of low-density Plasmodium falciparum and Plasmodium vivax infections

2017 ◽  
Vol 16 (1) ◽  
Author(s):  
Kayvan Zainabadi ◽  
Matthew Adams ◽  
Zay Yar Han ◽  
Hnin Wai Lwin ◽  
Kay Thwe Han ◽  
...  
2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Christine F. Markwalter ◽  
Myat Htut Nyunt ◽  
Zay Yar Han ◽  
Ricardo Henao ◽  
Aarti Jain ◽  
...  

Abstract Background Screening malaria-specific antibody responses on protein microarrays can help identify immune factors that mediate protection against malaria infection, disease, and transmission, as well as markers of past exposure to both malaria parasites and mosquito vectors. Most malaria protein microarray work has used serum as the sample matrix, requiring prompt laboratory processing and a continuous cold chain, thus limiting applications in remote locations. Dried blood spots (DBS) pose minimal biohazard, do not require immediate laboratory processing, and are stable at room temperature for transport, making them potentially superior alternatives to serum. The goals of this study were to assess the viability of DBS as a source for antibody profiling and to use DBS to identify serological signatures of low-density Plasmodium falciparum infections in malaria-endemic regions of Myanmar. Methods Matched DBS and serum samples from a cross-sectional study in Ingapu Township, Myanmar were probed on protein microarrays populated with P. falciparum antigen fragments. Signal and trends in both sample matrices were compared. A case-control study was then performed using banked DBS samples from malaria-endemic regions of Myanmar, and a regularized logistic regression model was used to identify antibody signatures of ultrasensitive PCR-positive P. falciparum infections. Results Approximately 30% of serum IgG activity was recovered from DBS. Despite this loss of antibody activity, antigen and population trends were well-matched between the two sample matrices. Responses to 18 protein fragments were associated with the odds of asymptomatic P. falciparum infection, albeit with modest diagnostic characteristics (sensitivity 58%, specificity 85%, negative predictive value 88%, and positive predictive value 52%). Conclusions Malaria-specific antibody responses can be reliably detected, quantified, and analysed from DBS, opening the door to serological studies in populations where serum collection, transport, and storage would otherwise be impossible. While test characteristics of antibody signatures were insufficient for individual diagnosis, serological testing may be useful for identifying exposure to asymptomatic, low-density malaria infections, particularly if sero-surveillance strategies target individuals with low previous exposure as sentinels for population exposure.


2021 ◽  
Vol 104 (4) ◽  
pp. 1371-1374
Author(s):  
Christine F. Markwalter ◽  
Billy Ngasala ◽  
Tonelia Mowatt ◽  
Christopher Basham ◽  
Zackary Park ◽  
...  

ABSTRACTUltrasensitive PCR used in low-transmission malaria-endemic settings has revealed a much higher burden of asymptomatic infections than that detected by rapid diagnostic tests (RDTs) or standard PCR, but there is limited evidence as to whether this is the case in higher transmission settings. Using dried blood spots (DBS) collected among 319 schoolchildren in Bagamoyo, Tanzania, we found good correlation (Pearson’s R = 0.995) between Plasmodium falciparum parasite densities detected by a DNA-based 18s rRNA real-time PCR (qPCR) and an RNA-based ultrasensitive reverse transcriptase (RT)-PCR (usPCR) for the same target. Whereas prevalence by usPCR was higher than that found by qPCR (37% versus 32%), the proportion of additionally detected low-density infections (median parasite density < 0.050 parasites/µL) represented an incremental increase. It remains unclear to what extent these low-density infections may contribute to the infectious reservoir in different malaria transmission settings.


2020 ◽  
Author(s):  
Noam Teyssier ◽  
Anna Chen ◽  
Elias Duarte ◽  
Rene Sit ◽  
Bryan Greenhouse ◽  
...  

Abstract Background: Whole-genome sequencing (WGS) is becoming increasingly useful to study the biology, epidemiology, and ecology of malaria parasites. Despite ease of sampling, DNA extracted from dried blood spots (DBS) has a high ratio of human DNA compared to parasite DNA, which poses a challenge for downstream genetic analyses. We evaluated the effects of multiple methods for DNA extraction, digestion of methylated DNA, and amplification on the quality and fidelity of WGS data recovered from DBS. Results: At 100 parasites/μL, Chelex-Tween-McrBC samples had higher coverage (5X depth = 93% genome) than QIAamp extracted samples (5X depth = 76% genome). The two evaluated sWGA primer sets showed minor differences in overall genome coverage and SNP concordance, with a newly proposed combination of 20 primers showing a modest improvement in coverage over those previously published. Conclusions: Overall, Tween-Chelex extracted samples that were treated with McrBC digestion and are amplified using 6A10AD sWGA conditions had minimal dropout rate, higher percentages of coverage at higher depth, and more accurate SNP concordance than QiaAMP extracted samples. These findings extend the results of previously reported methods, making whole genome sequencing accessible to a larger number of low density samples that are commonly encountered in cross-sectional surveys. Keywords: Malaria, P. falciparum, dried blood spots, Tween-Chelex, McrBC, selective whole genome amplification, whole genome sequencing This work was supported by the Bill & Melinda Gates Foundation, Grant Number OPP1132226 This work was supported by the Bill & Melinda Gates Foundation, Grant Number OPP1132226


Author(s):  
Colleen M. Leonard ◽  
Hussein Mohammed ◽  
Mekonnen Tadesse ◽  
Jessica N. McCaffery ◽  
Doug Nace ◽  
...  

Plasmodium falciparum and Plasmodium vivax are co-endemic in Ethiopia. This study investigated whether mixed infections were missed by microscopy from a 2017 therapeutic efficacy study at two health facilities in Ethiopia. All patients (N = 304) were initially classified as having single-species P. falciparum (n = 148 samples) or P. vivax infections (n = 156). Dried blood spots were tested for Plasmodium antigens by bead-based multiplex assay for pan-Plasmodium aldolase, pan-Plasmodium lactate dehydrogenase, P. vivax lactate dehydrogenase, and histidine-rich protein 2. Of 304 blood samples, 13 (4.3%) contained both P. falciparum and P. vivax antigens and were analyzed by polymerase chain reaction for species-specific DNA. Of these 13 samples, five were confirmed by polymerase chain reaction for P. falciparum/P. vivax co-infection. One sample, initially classified as P. vivax by microscopy, was found to only have Plasmodium ovale DNA. Plasmodium falciparum/P. vivax mixed infections can be missed by microscopy even in the context of a therapeutic efficacy study with multiple trained readers.


Drug Research ◽  
2018 ◽  
Vol 69 (06) ◽  
pp. 330-336 ◽  
Author(s):  
Abhishek Dixit ◽  
Sadanand Rangnathrao Mallurwar ◽  
Suresh P Sulochana ◽  
Mohd Zainuddin ◽  
Ramesh Mullangi

AbstractA simple, sensitive and rapid assay method has been developed and validated as per regulatory guideline for the estimation of tofacitinib on mice dried blood spots (DBS) using liquid chromatography coupled to tandem mass spectrometry with electro spray ionization in the positive-ion mode. The method employs liquid extraction of tofacitinib from DBS disk of mice whole blood followed by chromatographic separation using 5 mM ammonium acetate (pH 6.5):acetonitrile (20:80, v/v) at a flow rate of 0.60 mL/min on an X-Terra Phenyl column with a total run time 2.5 min. The MS/MS ion transitions monitored were m/z 313→149 for tofacitinib and m/z 316→149 for the internal standard (13C3, 15N-tofacitinib). The assay was linear in the range of 0.99–1980 ng/mL. The intra- and inter-day precision was in the range of 1.17–10.3 and 3.37–10.9%, respectively. Stability studies showed that tofacitinib was stable on DBS cards for one month. This novel method has been applied to analyze the DBS samples of tofacitinib obtained from a pharmacokinetic study in mice.


2018 ◽  
Vol 54 ◽  
pp. 131-138 ◽  
Author(s):  
Lawrence Fisher ◽  
Christine Davies ◽  
Osama Y. Al-Dirbashi ◽  
Herman J. ten Brink ◽  
Pranesh Chakraborty ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document