scholarly journals Humoral and cellular immune response to Plasmodium vivax VIR recombinant and synthetic antigens in individuals naturally exposed to P. vivax in the Republic of Korea

2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Sanghyun Lee ◽  
Young-Ki Choi ◽  
Youn-Kyoung Goo

Abstract Background Plasmodium vivax proteins with variant interspersed repeats (VIR) are the key proteins used by the parasite to escape from the host immune system through the creation of antigenic variations. However, few studies have been done to elucidate their role as targets of immunity. Thus, this study evaluated the naturally-acquired immune response against VIR proteins in vivax malaria-infected individuals in the Republic of Korea (ROK). Methods Seven recombinant VIR proteins and two synthetic peptides previously studied in other countries that elicited a robust immune response were used to investigate the antibody and cellular immune response in 681 P. vivax-infected people in ROK. The expression of IgM, IgG, and IgG subclasses against each VIR antigen or against PvMSP1-19 was analysed by ELISA. PvMSP1-19, known as a promising vaccine candidate of P. vivax, was used as the positive control for immune response assessment. Furthermore, the cellular immune response to VIR antigens was evaluated by in vitro proliferative assay, cellular activation assay, and cytokine detection in mononuclear cells of the P. vivax-infected population. Results IgM or IgG were detected in 52.4% of the population. Among all the VIR antigens, VIR25 elicited the highest humoral immune response in the whole population with IgG and IgM prevalence of 27.8% and 29.2%, respectively, while PvMSP1-19 elicited even higher prevalence (92%) of IgG in the population. As for the cellular immune response, VIR-C2, PvLP2, and PvMSP1-19 induced high cell activation and secretion of IL-2, IL-6, IL-10, and G-CSF in mononuclear cells from the P. vivax-infected population, comparable with results from PvMSP1-19. However, no significant proliferation response to these antigens was observed between the malaria-infected and healthy groups. Conclusion Moderate natural acquisition of antibody and cellular responses in P. vivax-infected Korean malaria patients presented here are similar to that in other countries. It is interesting that the immune response to VIR antigens is conserved among malaria parasites in different countries, considering that VIR genes are highly polymorphic. This thus warrants further studies to elucidate molecular mechanisms by which human elicit immune response to the malaria parasite VIR antigens.

2015 ◽  
Vol 14 (1) ◽  
Author(s):  
Siriruk Changrob ◽  
Chaniya Leepiyasakulchai ◽  
Takafumi Tsuboi ◽  
Yang Cheng ◽  
Chae Seung Lim ◽  
...  

Cells ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 2206
Author(s):  
Juliana G. Melgaço ◽  
Tamiris Azamor ◽  
Andréa M. V. Silva ◽  
José Henrique R. Linhares ◽  
Tiago P. dos Santos ◽  
...  

The cellular immune response plays an important role in COVID-19, caused by SARS-CoV-2. This feature makes use of in vitro models’ useful tools to evaluate vaccines and biopharmaceutical effects. Here, we developed a two-step model to evaluate the cellular immune response after SARS-CoV-2 infection-induced or spike protein stimulation in peripheral blood mononuclear cells (PBMC) from both unexposed and COVID-19 (primo-infected) individuals (Step1). Moreover, the supernatants of these cultures were used to evaluate its effects on lung cell lines (A549) (Step2). When PBMC from the unexposed were infected by SARS-CoV-2, cytotoxic natural killer and nonclassical monocytes expressing inflammatory cytokines genes were raised. The supernatant of these cells can induce apoptosis of A549 cells (mock vs. Step2 [mean]: 6.4% × 17.7%). Meanwhile, PBMCs from primo-infected presented their memory CD4+ T cells activated with a high production of IFNG and antiviral genes. Supernatant from past COVID-19 subjects contributed to reduce apoptosis (mock vs. Step2 [ratio]: 7.2 × 1.4) and to elevate the antiviral activity (iNOS) of A549 cells (mock vs. Step2 [mean]: 31.5% × 55.7%). Our findings showed features of immune primary cells and lung cell lines response after SARS-CoV-2 or spike protein stimulation that can be used as an in vitro model to study the immunity effects after SARS-CoV-2 antigen exposure.


1997 ◽  
Vol 19 (2) ◽  
pp. 47-59 ◽  
Author(s):  
L.H. CARVALHO ◽  
C.J.F. FONTES ◽  
A.A.M. FERNANDES ◽  
H.C. MARINUZZI ◽  
A.U. KRETTLI

2021 ◽  
Vol 49 (3) ◽  
pp. 193-201
Author(s):  
Teni H.R. ◽  
Wisnu Barlıanto ◽  
I Wayan Arsana Wıyasa ◽  
H.M.S. Kusuma ◽  
Tita Sari ◽  
...  

Background: Measles vaccinations have been suggested to provide immune protection and decreased measles incidence. However, there was a limited study evaluating how the measles vaccine elicits specific immune responses.Objective: This study aimed to evaluate both humoral and cellular immunity to first-dose measles vaccine Edmonston-Zagreb (EZ) in 9-month-old Indonesian infants.Methods: A cohort study was conducted on 9-month-old infants who got the first-dose of measles vaccine EZ. Measles-specific immunoglobulin G (IgG) antibody serum levels were measured using plaque-reduction microneutralization assay. Peripheral blood mononuclear cells were stimulated with a measles-specific peptide to identify a cellular immune response. Quantification of CD4+ and CD8+ T-cells producing interferon-gamma (IFN-ɣ) and interleu-kin 17-A (IL-17A) were conducted by flow cytometry. Humoral and cellular immune response parameters were analyzed over time.Results: The prevalence of seropositivity rates was 85.8% at 1-month after vaccination and 16.67% at 6-months postvaccination. Measles-specific IgG antibodies increased significantly at 1-month after measles vaccination. However, they decreased significantly 6-months after vaccination. IFN-ɣ and IL-17A secreting T-cells increased significantly at 1-month after measles vaccination. Interestingly, a significant decrease of IFN-ɣ and IL-17A secreting CD4+ T cells was noticed 6-months postvaccination compared to IFN-ɣ and IL-17A secreting CD8+ T cells. Conclusion: Our study suggests that the first-dose measles vaccine on 9-months-old infants seems to induce both humoral and cellular immune responses that decline 6-months after vaccination. 


2021 ◽  
Vol 15 (6) ◽  
pp. e0009378
Author(s):  
Ines Lakhal-Naouar ◽  
Rami Mukbel ◽  
Robert F. DeFraites ◽  
Rupal M. Mody ◽  
Lina N. Massoud ◽  
...  

Background Sand fly saliva exposure plays an important role in immunity against leishmaniasis where it has mostly been associated with protection. Phlebotomus (Ph.) alexandri transmits Leishmania (L.) infantum, the causative agent of visceral leishmaniasis (VL), in Iraq. Our group recently demonstrated that 20% of Operation Iraqi Freedom (OIF) deployers had asymptomatic VL (AVL) indicative of prior infection by the parasite L. infantum. Little is known about Ph. alexandri saliva, and the human immune response to it has never been investigated. Here, we characterize the humoral and cellular immune response to vector saliva in OIF deployers naturally exposed to bites of Ph. alexandri and characterize their immunological profiles in association to AVL. Methodology/Principal findings The humoral response to Ph. alexandri salivary gland homogenate (SGH) showed that 64% of 200 OIF deployers developed an antibody response. To assess the cellular immune response to saliva, we selected a subcohort of subjects based on their post-travel (median 4 months; range 1–22 months) antibody response (SGH Antibody [Ab] positive or negative) as well as their AVL status; ten never-traveled controls were also included. Banked peripheral blood mononuclear cells (PBMC), collected ~10 years after end of deployment, were stimulated with SGH for 96 hours. The levels of IFN- γ, IL-6, IL-10, IL-13 and IL-17 were determined by ELISA. Our findings indicate that OIF deployers mounted a cellular response to SGH where the anti-SGH+ asymptomatic subjects developed the highest cytokine levels. Further, stimulation with SGH produced a mixture of pro-inflammatory and anti-inflammatory cytokines. Contrary to our hypothesis, we observed no correlation between the cellular immune response to Ph. alexandri SGH and prevention from asymptomatic infection with L. infantum. Conclusions/Significance As we found, although all infected deployers demonstrated persistent disease control years after deployment, this did not correlate with anti-saliva systemic cellular response. More exposure to this vector may facilitate transmission of the L. infantum parasite. Since exposure to saliva of Ph. alexandri may alter the human immune response to bites of this vector, this parameter should be taken into consideration when considering the VL risk.


Sign in / Sign up

Export Citation Format

Share Document