scholarly journals Biomimetic recombinant of red blood cell membranes for improved photothermal therapy

2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Pengkai Wu ◽  
Xing Jiang ◽  
Shuai Yin ◽  
Ying Yang ◽  
Tianqing Liu ◽  
...  

Abstract Background RBC membrane derived nanoparticles (NPs) represent an emerging platform with prolonged circulation capacity for the delivery of active substances. For functionalize derived RBCs NPs, various strategies, such as biomimetic rebuilding of RBCs, chemical modification or inserting ligands, have been carried out to improve their performance. However, one potential adverse effect for these methods is the structural failure of membrane proteins, consequently affecting its original immune escape function. Results In this study, we reported a green technology of “disassembly-reassembly” to prepare biomimetic reconstituted RBCs membrane (rRBCs) by separating the endogenous proteins and lipids from nature RBC membrane. IR780 iodide was used as a pattern drug to verify the property and feasibility of rRBCs by constructing IR780@rRBC NPs with IR780@RBC NPs and free IR780 as controls. The results demonstrated the superiority of IR780@rRBC NPs in toxicity, stability, pharmacokinetics and pharmacodynamics compared with IR780@rRBC and free IR780. Conclusions The reported “disassembly-reassembly” strategy shows great potential to produce controllable and versatile rRBC membrane-inspired delivery platform, which may be used to overcome the deficiency of functionalization in cell membrane coated nanoparticles . Graphic abstract

2021 ◽  
Author(s):  
Pengkai Wu ◽  
Xing Jiang ◽  
Shuai Yin ◽  
Ying Yang ◽  
Tianqing Liu ◽  
...  

Abstract Background: RBC membrane derived nanoparticles (NPs) represent an emerging platform with prolonged circulation capacity for the delivery of active substances. For endowing derived RBCs NPs various functions such as targeting ability, chemical modification of targeting groups or inserting targeted ligand-linker-lipid conjugates into the membranes is usually used as classical strategy. However, these methods may lead to structural failure of membrane proteins, consequently affecting its original immune escape function.Results: In this study, we reported a green technology of “disassembly-reassembly” to prepare biomimetic reconstituted RBCs membrane (rRBCs) by separating the endogenous proteins and lipids from nature RBC membrane. IR780 iodide was used as a pattern drug to verify the property and feasibility of rRBCs by constructing IR780@rRBC NPs with IR780@RBC NPs and free IR780 as controls. The results demonstrated the superiority of IR780@rRBC NPs in toxicity, stability, pharmacokinetics and pharmacodynamics compared with IR780@rRBC and free IR780.Conclusions: The reported “disassembly-reassembly” strategy shows great potential to produce controllable and versatile rRBC membrane-inspired delivery platform, which may be used to overcome the deficiency of target-selectivity ligands in cell membrane coated nanoparticles.


Molecules ◽  
2019 ◽  
Vol 24 (10) ◽  
pp. 1925 ◽  
Author(s):  
Marta Ziegler-Borowska ◽  
Kinga Mylkie ◽  
Mariana Kozlowska ◽  
Pawel Nowak ◽  
Dorota Chelminiak-Dudkiewicz ◽  
...  

Human serum albumin (HSA) is one of the most frequently immobilized proteins on the surface of carriers, including magnetic nanoparticles. This is because the drug–HSA interaction study is one of the basic pharmacokinetic parameters determined for drugs. In spite of many works describing the immobilization of HSA and the binding of active substances, research describing the influence of the used support on the effectiveness of immobilization is missing. There are also no reports about the effect of the support drying method on the effectiveness of protein immobilization. This paper examines the effect of both the method of functionalizing the polymer coating covering magnetic nanoparticles (MNPs), and the drying methods for the immobilization of HSA. Albumin was immobilized on three types of aminated chitosan-coated nanoparticles with a different content of amino groups long distanced from the surface Fe3O4-CS-Et(NH2)1–3. The obtained results showed that both the synthesis method and the method of drying nanoparticles have a large impact on the effectiveness of immobilization. Due to the fact that the results obtained for Fe3O4-CS-Et(NH2)2 significantly differ from those obtained for the others, the influence of the geometry of the shell structure on the ability to bind HSA was also explained by molecular dynamics.


2018 ◽  
Vol 33 (1) ◽  
pp. 72-81 ◽  
Author(s):  
Lei Xu ◽  
Shuo Wu ◽  
Xiaoqiu Zhou

Drug-loaded nanoparticles have been widely researched in the antitumor. However, some of them are unsatisfactory in the long blood circulation and controlled drug release. Red blood cell (RBC) membrane vesicles (RV)-coated nanoparticles have gained more and more attention in drug delivery for their many unique advantages, such as excellent stability, long blood circulation, and reduced the macrophage cells uptake. Herein, by utilizing the advantages of RV, we fabricated RV-coated poly(lactide- co-glycolide) (PLGA)–docetaxel (RV/PLGA/DTX) nanoparticles to enhance the antitumor efficiency in vivo. The RV/PLGA/DTX showed spherical morphology with particle size of about 100 nm and zeta potential at −12.63 mV, which could maintain stability for a long time. The RV/PLGA/DTX significantly enhanced cellular uptake of DTX compared to PLGA/DTX in HepG2 cells. Moreover, RV/PLGA/DTX showed the strongest antitumor effect in vitro. Prolonged blood circulation and enhanced DTX accumulation at the tumor site through enhanced permeability and retention (EPR) effect were achieved by RV/PLGA/DTX, which eventually obtained satisfactory antitumor effect and depressed system toxicity on mice bearing HepG2 xenografts mouse models when compared with free DTX. The hematoxylin and eosin (H&E) and immunofluorescence assays further proved the advantages of RV/PLGA/DTX in vivo antitumor. These RV-coated nanoparticles provide a mimetic therapy, completely inhibited the growth of the HepG2 cells, and with simple compositions, suggesting it to be an ideal strategy for improving the antitumor effect of drug-loaded nanoparticles.


2009 ◽  
Vol 63 (1) ◽  
pp. 33-37
Author(s):  
Jadranka Odovic ◽  
Jasna Trbojevic-Stankovic

This paper presents the review of the methods used in research of the biological active substances hydrophobicity, a very important property. The biological activity of some substances depends on their pharmacokinetics and pharmacodynamics. These processes depend on the molecule's capability to interact with two different media: aqueous (cells interior) and non-aqueous (cells membrane), or on the molecule lipophilicity. Today, great attention is given to investigation and systematic determination of drugs lipophilicity. In these researches chromatography methods have an important role.


Processes ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 357
Author(s):  
Jianjun Zhou ◽  
Beatriz Gullón ◽  
Min Wang ◽  
Patricia Gullón ◽  
José M. Lorenzo ◽  
...  

Food by-products contain a remarkable source of bioactive molecules with many benefits for humans; therefore, their exploitation can be an excellent opportunity for the food sector. Moreover, the revalorization of these by-products to produce value-added compounds is considered pivotal for sustainable growth based on a circular economy. Traditional extraction technologies have several drawbacks mainly related to the consumption of hazardous organic solvents, and the high temperatures maintained for long extraction periods which cause the degradation of thermolabile compounds as well as a low extraction efficiency of desired compounds. In this context, supercritical fluid extraction (SFE) has been explored as a suitable green technology for the recovery of a broad range of bioactive compounds from different types of agri-food wastes. This review describes the working principle and development of SFE technology to valorize by-products from different origin (marine, fruit, vegetable, nuts, and other plants). In addition, the potential effects of the extracted active substances on human health were also approached.


2021 ◽  
Author(s):  
Hongying Chen ◽  
Jiang Deng ◽  
Xintong Yao ◽  
Yungang He ◽  
Hanyue Li ◽  
...  

Abstract Background: Jaw bones are the most common organs to be invaded by oral malignancies, such as oral squamous cell carcinoma (OSCC), because of their special anatomical relationship. Various serious complications, such as pathological fractures and bone pain can significantly decrease the quality of life or even survival outcomes for a patient. Although chemotherapy is a promising strategy for bone invasion treatment, its clinical applications are limited by the lack of tumor-specific targeting and poor permeability in bone tissue. Therefore, it is necessary to develop a smart bone and cancer dual targeting drug delivery platform. Results: We designed a dual targeting nano-biomimetic drug delivery vehicle Asp8[H40-TPZ/IR780@(RBC-H)] that has excellent bone and cancer targeting as well as immune escape abilities to treat malignancies in jaw bones. These nanoparticles were camouflaged with a head and neck squamous cell carcinoma WSU-HN6 cell (H) and red blood cell (RBC) hybrid membrane, which were modified by an oligopeptide of eight aspartate acid (Asp8). The spherical morphology and typical core-shell structure of biomimetic nanoparticles were observed by transmission electron microscopy. These nanoparticles exhibited the same surface proteins as those of WSU-HN6 and RBC. Flow cytometry and confocal microscopy showed a greater uptake of the biomimetic nanoparticles when compared to bare H40-PEG nanoparticles. Biodistribution of the nanoparticles in vivo revealed that they were mainly localized in the area of bone invasion by WSU-HN6 cells. Moreover, the Asp8[H40-TPZ/IR780@(RBC-H)] nanoparticles exhibited effective cancer growth inhibition properties when compared to other TPZ or IR780 formulations.Conclusions: Asp8[H40-TPZ/IR780@(RBC-H)] has bone targeting, tumor-homing and immune escape abilities, therefore, it is an efficient multi-targeting drug delivery platform for achieving precise anti-cancer therapy during bone invasion.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Hongying Chen ◽  
Jiang Deng ◽  
Xintong Yao ◽  
Yungang He ◽  
Hanyue Li ◽  
...  

Abstract Background Jaw bones are the most common organs to be invaded by oral malignancies, such as oral squamous cell carcinoma (OSCC), because of their special anatomical relationship. Various serious complications, such as pathological fractures and bone pain can significantly decrease the quality of life or even survival outcomes for a patient. Although chemotherapy is a promising strategy for bone invasion treatment, its clinical applications are limited by the lack of tumor-specific targeting and poor permeability in bone tissue. Therefore, it is necessary to develop a smart bone and cancer dual targeting drug delivery platform. Results We designed a dual targeting nano-biomimetic drug delivery vehicle Asp8[H40-TPZ/IR780@(RBC-H)] that has excellent bone and cancer targeting as well as immune escape abilities to treat malignancies in jaw bones. These nanoparticles were camouflaged with a head and neck squamous cell carcinoma WSU-HN6 cell (H) and red blood cell (RBC) hybrid membrane, which were modified by an oligopeptide of eight aspartate acid (Asp8). The spherical morphology and typical core-shell structure of biomimetic nanoparticles were observed by transmission electron microscopy. These nanoparticles exhibited the same surface proteins as those of WSU-HN6 and RBC. Flow cytometry and confocal microscopy showed a greater uptake of the biomimetic nanoparticles when compared to bare H40-PEG nanoparticles. Biodistribution of the nanoparticles in vivo revealed that they were mainly localized in the area of bone invasion by WSU-HN6 cells. Moreover, the Asp8[H40-TPZ/IR780@(RBC-H)] nanoparticles exhibited effective cancer growth inhibition properties when compared to other TPZ or IR780 formulations. Conclusions Asp8[H40-TPZ/IR780@(RBC-H)] has bone targeting, tumor-homing and immune escape abilities, therefore, it is an efficient multi-targeting drug delivery platform for achieving precise anti-cancer therapy during bone invasion. Graphical Abstract


2020 ◽  
Vol 6 (16) ◽  
pp. eaay9035 ◽  
Author(s):  
Elana Ben-Akiva ◽  
Randall A. Meyer ◽  
Hongzhe Yu ◽  
Jonathan T. Smith ◽  
Drew M. Pardoll ◽  
...  

The design of next-generation nanobiomaterials requires precise engineering of both physical properties of the core material and chemical properties of the material’s surface to meet a biological function. A bio-inspired modular and versatile technology was developed to allow biodegradable polymeric nanoparticles to circulate through the blood for extended periods of time while also acting as a detoxification device. To mimic red blood cells, physical and chemical biomimicry are combined to enhance the biological function of nanomaterials in vitro and in vivo. The anisotropic shape and membrane coating synergize to resist cellular uptake and reduce clearance from the blood. This approach enhances the detoxification properties of nanoparticles, markedly improving survival in a mouse model of sepsis. The anisotropic membrane-coated nanoparticles have enhanced biodistribution and therapeutic efficacy. These biomimetic biodegradable nanodevices and their derivatives have promise for applications ranging from detoxification agents, to drug delivery vehicles, and to biological sensors.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Lizhi Liu ◽  
Xuan Bai ◽  
Maria-Viola Martikainen ◽  
Anna Kårlund ◽  
Marjut Roponen ◽  
...  

AbstractCell membrane coated nanoparticles (NPs) have recently been recognized as attractive nanomedical tools because of their unique properties such as immune escape, long blood circulation time, specific molecular recognition and cell targeting. However, the integrity of the cell membrane coating on NPs, a key metrics related to the quality of these biomimetic-systems and their resulting biomedical function, has remained largely unexplored. Here, we report a fluorescence quenching assay to probe the integrity of cell membrane coating. In contradiction to the common assumption of perfect coating, we uncover that up to 90% of the biomimetic NPs are only partially coated. Using in vitro homologous targeting studies, we demonstrate that partially coated NPs could still be internalized by the target cells. By combining molecular simulations with experimental analysis, we further identify an endocytic entry mechanism for these NPs. We unravel that NPs with a high coating degree (≥50%) enter the cells individually, whereas the NPs with a low coating degree (<50%) need to aggregate together before internalization. This quantitative method and the fundamental understanding of how cell membrane coated NPs enter the cells will enhance the rational designing of biomimetic nanosystems and pave the way for more effective cancer nanomedicine.


2020 ◽  
Vol 47 (6) ◽  
pp. 855.e11-855.e12
Author(s):  
H. Trenholme ◽  
A. Hanafi ◽  
R. Reed ◽  
D. Sakai ◽  
C. Ryan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document