scholarly journals An intelligent responsive macrophage cell membrane-camouflaged mesoporous silicon nanorod drug delivery system for precise targeted therapy of tumors

2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Minghua Li ◽  
Xiaolong Gao ◽  
Chao Lin ◽  
Aijun Shen ◽  
Jing Luo ◽  
...  

AbstractMacrophage cell membrane-camouflaged nanocarriers can effectively reduce immune cell clearance and actively target tumors. In this study, a macrophage cell membrane-camouflaged mesoporous silica nanorod (MSNR)-based antitumor drug carrier equipped with a cationic polymer layer was developed. As drug carriers, these MSNRs were loaded with the thermosensitive phase change material L-menthol (LM), the chemotherapy drug doxorubicin (DOX) and the fluorescent molecule indocyanine green (ICG). The rod-like shape of the MSNRs was shown to enhance the penetration of the drug carriers to tumors. In the weakly acidic tumor microenvironment, the cationic polymer exhibited a proton sponge effect to trigger macrophage cell membrane coating detachment, promoting tumor cell uptake. Following nanocarrier uptake, ICG is heated by near-infrared (NIR) irradiation to make LM undergo a phase transition to release DOX and generate a synergistic effect of thermochemotherapy which kills tumor cells and inhibits tumor growth together with reactive oxygen species (ROS) produced by ICG. Overall, this nanohybrid drug delivery system demonstrates an intelligent cascade response, leads to tissue-cell specific targeting and improves drug release accuracy, thus proving to be an effective cancer therapy. Graphical Abstract

Author(s):  
Shubham Shitole

Abstract: For the past few years, there has been a considerable research on the basis of Novel drug delivery system, using particulate vesicle systems as such drug carriers for small and large molecules. Nanoparticles, Liposomes, Microspheres, Niosomes, Pronisomes, Ethosomes, Proliposomes have been used as drug carrier in vesicle drug delivery system. Nanotechnology refers to the creation and utilization of materials whose constituents exist at the nanoscale; and, by convention, be up to 100 nm in size.. Nanoparticles are being used for diverse purposes, from medical treatments, using in various branches of industry production such as solar and oxide fuel batteries for energy storage, to wide incorporation into diverse materials of everyday use such as cosmetics or clothes, optical devices, catalytic, bactericidal, electronic, sensor technology, biological labelling and treatment of some cancers. Various polymers have been used in the formation of Nanoparticles. Nanoparticles have been improving the therapeutic effect of drugs and minimize the side effects. Basically, Nanoparticles have been prepared by using various techniques as such dispersion of preformed polymers, polymerization of monomers and ionic gelation or coacervation of hydrophilic polymer. Nanoparticles have been evaluated by using parameters of drug entrapment efficiency, particle shape, drug release study. Keywords: Nanoparticles, Drug, novel, delivery


2018 ◽  
Vol 33 (2) ◽  
pp. 170-181 ◽  
Author(s):  
Hongying Su ◽  
Wen Zhang ◽  
Yayun Wu ◽  
Xiaodong Han ◽  
Gang Liu ◽  
...  

Stimuli-responsive hydrogels have been widely researched as carrier systems, due to their excellent biocompatibility and responsiveness to external physiologic environment factors. In this study, dextran-based nanogel with covalently conjugated doxorubicin (DOX) was developed via Schiff base formation using the inverse microemulsion technique. Since the Schiff base linkages are acid-sensitive, drug release profile of the DOX-loaded nanogel would be pH-dependent. In vitro drug release studies confirmed that DOX was released much faster under acidic condition (pH 2.0, 5.0) than that at pH 7.4. Approximately 66, 28, and 9% of drug was released in 72 h at pH 2.0, 5.0, and 7.4, respectively. Cell uptake by the human breast cancer cell (MCF-7) demonstrated that the DOX-loaded dextran nanogel could be internalized through endocytosis and distributed in endocytic compartments inside tumor cells. These results indicated that the Schiff base-containing nanogel can serve as a pH-sensitive drug delivery system. And the presence of multiple aldehyde groups on the nanogel are available for further conjugations of targeting ligands or imaging probes.


2018 ◽  
Vol 7 (4) ◽  
pp. 291-301 ◽  
Author(s):  
Zepeng Jiao ◽  
Bin Zhang ◽  
Chunya Li ◽  
Weicong Kuang ◽  
Jingxian Zhang ◽  
...  

Abstract A drug delivery system based on carboxymethyl cellulose-grafted graphene oxide loaded by methotrexate (MTX/CMC-GO) with pH-sensitive and controlled drug-release properties was developed in this work. CMC was grafted on graphene oxide by ethylenediamine through hydrothermal treatment. CMC serves as a pH-sensitive trigger, while CMC-GO serves as a drug-carrying vehicle due to the curved layer and large plain surface. Different amounts of drugs could be loaded into CMC-GO nanocarriers by control of the original amount of drug/carrier ratios. Additionally, low cytotoxicity against NIH-3T3 cells and low in vivo toxicity was observed. In vivo tumor growth inhibition assays showed that MTX/CMC-GO demonstrated superior antitumor activity than free MTX against HT-29 cells. Moreover, prolonged survival time of mice was observed after MTX/CMC-GO administration. The MTX/CMC-GO drug delivery system has a great potential in colon cancer therapy.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Jonathan Rios-Doria ◽  
Adam Carie ◽  
Tara Costich ◽  
Brian Burke ◽  
Habib Skaff ◽  
...  

Chemotherapeutic drugs are widely used for the treatment of cancer; however, use of these drugs is often associated with patient toxicity and poor tumor delivery. Micellar drug carriers offer a promising approach for formulating and achieving improved delivery of hydrophobic chemotherapeutic drugs; however, conventional micelles do not have long-term stability in complex biological environments such as plasma. To address this problem, a novel triblock copolymer has been developed to encapsulate several different hydrophobic drugs into stable polymer micelles. These micelles have been engineered to be stable at low concentrations even in complex biological fluids, and to release cargo in response to low pH environments, such as in the tumor microenvironment or in tumor cell endosomes. The particle sizes of drugs encapsulated ranged between 30–80 nm, with no relationship to the hydrophobicity of the drug. Stabilization of the micelles below the critical micelle concentration was demonstrated using a pH-reversible crosslinking mechanism, with proof-of-concept demonstrated in both in vitro and in vivo models. Described herein is polymer micelle drug delivery system that enables encapsulation and stabilization of a wide variety of chemotherapeutic drugs in a single platform.


2021 ◽  
Vol 21 (2) ◽  
pp. 824-832
Author(s):  
Zhenzhen Fan ◽  
Qingsheng Liu ◽  
Fangfang Lu ◽  
Zhihui Dong ◽  
Peng Gao

Liver cancer has a high incidence and a poor prognosis, which seriously affects human health. Doxorubicin is one of the chemotherapeutics used in the treatment of tumours, but its severe adverse reactions, especially cardiac toxicity, have limited its clinical application. The nanometre drug delivery system enables drug-loaded nanoparticles to be specifically concentrated in tumour tissues, increasing cell uptake and improving curative effect. Therefore, in this paper, folic acid-modified mesoporous silica nanoparticles (MSN-NH2-PEG-FA) were synthesized by modifying the folic acid on the surface of a drug carrier by using the characteristics of the expression of folic acid receptors, and using it as a drug. The carrier was loaded with antitumor drug doxorubicin hydrochloride (DOX), and a nanometre drug delivery system (MSN-NH2-PEG-FA/DOX) was constructed. At the same time, the near-infrared dye Cy5 was used to mark the mother nucleus to construct fluorescent nanoparticles (MSN-NH2-PEG-FA/DOX-Cy5) for cell and tumour imaging, so as to obtain the abdominal image of liver cancer patients, thereby realizing diagnosis and treatment. The research results show that the carrier can specifically gather in the liver area, reduce the distribution in the heart, reduce the toxic and side effects of drugs, and prolong the survival time of patients. The results of this study provide new ideas for the treatment of liver cancer, and provide a new theoretical basis and experimental basis for the study of inorganic nanomaterials as targeted drug delivery systems.


2016 ◽  
Vol 4 (21) ◽  
pp. 3823-3831 ◽  
Author(s):  
Stefano Fedeli ◽  
Alberto Brandi ◽  
Lorenzo Venturini ◽  
Paola Chiarugi ◽  
Elisa Giannoni ◽  
...  

An efficient drug delivery system through a straightforward approach to multi-walled carbon nanotube decoration.


2005 ◽  
Vol 288-289 ◽  
pp. 125-128 ◽  
Author(s):  
Shen Guo Wang ◽  
Qing Cai ◽  
Jian Zhong Bei ◽  
Wei Yun Shi ◽  
Li Xin Xie

In the article a kind biodegradable drug carrier (glycolide-co-lactide-co-caprolactone) tricomponent copolymer (PGLC) was synthesized by ring opening copolymerization of glycolide (GA), lactide (LA) and ε-caprolactone (CL), and was used to manufacture an implantable drug preparation---Cyclosporine-PGLC drug delivery system (Cs-PGLC DDS).The Cs could slowly release from the Cs-PGLC DDS near linearly and last for a long time in vitro. A clinically significant Cs concentration in the cornea and anterior chamber could be achieved by implanting the Cs-PGLC DDS in anterior chamber. It was demonstrated that the Cs-PGLC DDS is a long-effective intraocular immunosuppressive agent for remaining corneal allograft clear and significantly prolong its survival time.


2015 ◽  
Vol 112 (10) ◽  
pp. 2978-2983 ◽  
Author(s):  
Tuo Wei ◽  
Chao Chen ◽  
Juan Liu ◽  
Cheng Liu ◽  
Paola Posocco ◽  
...  

Drug resistance and toxicity constitute challenging hurdles for cancer therapy. The application of nanotechnology for anticancer drug delivery is expected to address these issues and bring new hope for cancer treatment. In this context, we established an original nanomicellar drug delivery system based on an amphiphilic dendrimer (AmDM), which could generate supramolecular micelles to effectively encapsulate the anticancer drug doxorubicin (DOX) with high drug-loading capacity (>40%), thanks to the unique dendritic structure creating large void space for drug accommodation. The resulting AmDM/DOX nanomicelles were able to enhance drug potency and combat doxorubicin resistance in breast cancer models by significantly enhancing cellular uptake while considerably decreasing efflux of the drug. In addition, the AmDM/DOX nanoparticles abolished significantly the toxicity related to the free drug. Collectively, our studies demonstrate that the drug delivery system based on nanomicelles formed with the self-assembling amphiphilic dendrimer constitutes a promising and effective drug carrier in cancer therapy.


Author(s):  
Ashish B. Budhrani ◽  
Shubhra R. Rai ◽  
Aarati S. Panchbhai ◽  
Rajshri B. Dongarwar

Nano-emulsion dosage forms have nano-sized droplets of disperse phase and are kinetically stable dosage form. Nano-emulsions are included under the category of new drug delivery system containing emulsified water in oil/oil in water system having mean globule size ranges from 10 nm to 1000 nm.  In the field of pharmacy, nano-emulsions play an essential role in the delivery of medication through various drug administration routes like parenteral, topical and oral route. Nano-emulsions are nano-sized emulsions which are used under high investigation as a drug carrier for enhancing the delivery of therapeutic agents. Nano-emulsions have enhanced functional properties as compared to standard emulsions. They are nowadays growing work for utilizing nano-sized particles in the research of pharmaceuticals, cosmetics and food products.  Mainly, intrigue has been creating simultaneously with higher emulsification techniques and mechanisms of stabilization. Nano-emulsions are formulated by both methods like high energy emulsification or low energy emulsification methods. Rapid energy emulsification technique includes high shear mixing, high-pressure homogenization or ultrasonication. In contrast, low energy emulsification technique includes the merit of the physicochemical characteristics of the system, which exploits phase transitions to obtained nano-emulsion. This review article is an effort to summarize comparative aspects like introduction, types, advantages, disadvantages, components, factors affecting, methods of preparations, methods of analysis of nano-emulsion and applications of nano-emulsion.


Sign in / Sign up

Export Citation Format

Share Document