scholarly journals Nanofiber/hydrogel core–shell scaffolds with three-dimensional multilayer patterned structure for accelerating diabetic wound healing

2022 ◽  
Vol 20 (1) ◽  
Author(s):  
Jiankai Li ◽  
Tianshuai Zhang ◽  
Mingmang Pan ◽  
Feng Xue ◽  
Fang Lv ◽  
...  

AbstractImpaired angiogenesis is one of the predominant reasons for non-healing diabetic wounds. Herein, a nanofiber/hydrogel core–shell scaffold with three-dimensional (3D) multilayer patterned structure (3D-PT-P/GM) was introduced for promoting diabetic wound healing with improved angiogenesis. The results showed that the 3D-PT-P/GM scaffolds possessed multilayered structure with interlayer spacing of about 15–80 μm, and the hexagonal micropatterned structures were uniformly distributed on the surface of each layer. The nanofibers in the scaffold exhibited distinct core–shell structures with Gelatin methacryloyl (GelMA) hydrogel as the shell and Poly (d, l-lactic acid) (PDLLA) as the core. The results showed that the porosity, water retention time and water vapor permeability of the 3D-PT-P/GM scaffolds increased to 1.6 times, 21 times, and 1.9 times than that of the two-dimensional (2D) PDLLA nanofibrous scaffolds, respectively. The in vitro studies showed that the 3D-PT-P/GM scaffolds could significantly promote cell adhesion, proliferation, infiltration and migration throughout the scaffolds, and the expression of cellular communication protein-related genes, as well as angiogenesis-related genes in the same group, was remarkably upregulated. The in vivo results further demonstrated that the 3D-PT-P/GM scaffolds could not only effectively absorb exudate and provide a moist environment for the wound sites, but also significantly promote the formation of a 3D network of capillaries. As a result, the healing of diabetic wounds was accelerated with enhanced angiogenesis, granulation tissue formation, and collagen deposition. These results indicate that nanofiber/hydrogel core–shell scaffolds with 3D multilayer patterned structures could provide a new strategy for facilitating chronic wound healing. Graphical Abstract

2021 ◽  
Author(s):  
Jiankai Li ◽  
Tianshuai Zhang ◽  
Mingmang Pan ◽  
Feng Xue ◽  
Fang Lv ◽  
...  

Abstract Impaired angiogenesis is one of the predominant reasons for non-healing diabetic wounds. Herein, a nanofiber/ hydrogel core-shell scaffold with three-dimensional (3D) multilayer patterned structure (3D-PT-P/GM) was introduced for promoting diabetic wound healing with improved angiogenesis. The results showed that the 3D-PT-P/GM scaffolds possessed multilayered structure with interlayer spacing of about 15-80 μm, and the hexagonal micropatterned structures were uniformly distributed on the surface of each layer. The nanofibers in the scaffold exhibited distinct core-shell structures with Gelatin methacryloyl (GelMA) hydrogel as the shell and Poly (D, L-lactic acid) (PDLLA) as the core. The results showed that the porosity, water retention time and water vapor permeability of the 3D-PT-P/GM scaffolds increased to 1.6 times, 21 times, and 1.9 times than that of the two-dimensional (2D) PDLLA nanofibrous scaffolds, respectively. The in vitro studies showed that the 3D-PT-P/GM scaffolds could significantly promote cell adhesion, proliferation, infiltration and migration throughout the scaffolds, and the expression of cellular communication protein-related genes, as well as angiogenesis-related genes in the same group, was remarkably upregulated. The in vivo results further demonstrated that the 3D-PT-P/GM scaffolds could not only effectively absorb exudate and provide a moist environment for the wound sites, but also significantly promote the formation of a 3D network of capillaries. As a result, the healing of diabetic wounds was accelerated with enhanced angiogenesis, granulation tissue formation, and collagen deposition. These results indicate that nanofiber/ hydrogel core-shell scaffolds with 3D multilayer patterned structures could provide a new strategy for facilitating chronic wound healing.


2021 ◽  
Author(s):  
Sheikh Tanzina Haque ◽  
Subbroto Kumar Saha ◽  
Md. Enamul Haque ◽  
Nirupam Biswas

Diabetic wounds often presage chronic complications that are difficult to treat. Unfortunately, existing conventional treatment modalities often warrant unpremeditated side effects, given the need to develop alternative therapeutic phenotypes that...


2020 ◽  
Vol 17 (162) ◽  
pp. 20190712 ◽  
Author(s):  
Muhammet Emin Cam ◽  
Sila Yildiz ◽  
Hussain Alenezi ◽  
Sumeyye Cesur ◽  
Gul Sinemcan Ozcan ◽  
...  

In order to provide more effective treatment strategies for the rapid healing of diabetic wounds, novel therapeutic approaches need to be developed. The therapeutic potential of peroxisome proliferator-activated receptor-γ (PPAR-γ) agonist pioglitazone hydrochloride (PHR) in two different release kinetic scenarios, burst release and sustained release, was investigated and compared with in vitro and in vivo tests as potential wound healing dressings. PHR-loaded fibrous mats were successfully fabricated using polyvinyl-pyrrolidone and polycaprolactone by scalable pressurized gyration. The results indicated that PHR-loaded fibrous mats expedited diabetic wound healing in type-1 diabetic rats and did not show any cytotoxic effect on NIH/3T3 (mouse embryo fibroblast) cells, albeit with different release kinetics and efficacies. The wound healing effects of fibrous mats are presented with histological and biochemical evaluations. PHR-loaded fibrous mats improved neutrophil infiltration, oedema, and inflammation and increased epidermal regeneration and fibroblast proliferation, but the formation of hair follicles and completely improved oedema were observed only in the sustained release form. Thus, topical administration of PPAR-γ agonist in sustained release form has high potential for the treatment of diabetic wounds in inflammatory and proliferative phases of healing with high bioavailability and fewer systemic side effects.


2021 ◽  
Author(s):  
Qian Wei ◽  
Yaxi Wang ◽  
Kui Ma ◽  
Xiaowei Bian ◽  
Qiankun Li ◽  
...  

Abstract Background: Endothelial dysfunction caused by persistent hyperglycemia in diabetes is responsible for impaired angiogenesis in diabetic wounds. Exosomes are considered potential therapeutic tools to promote diabetic wound healing. The aim of this study was to investigate the effects of exosomes secreted by human umbilical cord mesenchymal stem cells (hucMSC-Exos) on angiogenesis under high glucose (HG) conditions in vivo and in vitro and to explore the underlying mechanisms.Methods: HucMSC-Exos were used to treat diabetic wounds and human umbilical vascular endothelial cells (HUVECs) exposed to HG. Wound healing and angiogenesis were assessed in vivo. The biological characteristics of HUVECs were examined in vitro. Expression of pro-angiogenesis genes in HUVECs was also examined by western blotting. The miRNAs contained within hucMSC-Exos were identified using miRNA microarrays and qRT-PCR. The roles of selected miRNAs in angiogenesis were assessed using specific agomirs and inhibitors.Results: In vivo, local application of hucMSC-Exos enhanced wound healing and angiogenesis. In vitro, hucMSC-Exos reduced senescence of HG-treated HUVECs and promoted proliferation, migration, and tube formation by inhibiting phosphatase and tensin homolog (PTEN) expression and activating the AKT/HIF-1α/VEGF pathways. MiR-221-3p was enriched in hucMSC-Exos. In vitro, MiR-221-3p downregulated PTEN and activated the AKT/HIF-1α/VEGF pathway to promote proliferation, migration, and tube formation in HG-treated HUVECs. In vivo, miR-221-3p agomirs mimicked the effects of hucMSC-Exos on wound healing and angiogenesis, whereas miR-221-3p inhibitors reversed their effects.Conclusions: Our findings suggest that hucMSC-Exos have regenerative and protective effects on HG-induced senescence in endothelial cells via transfer of miR-221-3p, thereby accelerating diabetic wound healing. Thus, hucMSC-Exos may be promising therapeutic candidates for improving diabetic wound angiogenesis.


Author(s):  
Jiang-wen Wang ◽  
Yuan-zheng Zhu ◽  
Xuan Hu ◽  
Jia-ying Nie ◽  
Zhao-hui Wang ◽  
...  

Background: The healing of diabetic wounds is poor due to a collagen deposition disorder. Matrix metalloproteinase-9 (MMP-9) is closely related to collagen deposition in the process of tissue repair. Many studies have demonstrated that extracellular vesicles derived from adipose-derived stem cells (ADSC-EVs) promote diabetic wound healing by enhancing collagen deposition. Objective: In this study, we explored if ADSC-EVs could downregulate the expression of MMP-9 in diabetic wounds and promote wound healing by improving collagen deposition. The potential effects of ADSC-EVs on MMP-9 and diabetic wound healing were tested both in vitro and in vivo. Methods: We first evaluated the effect of ADSC-EVs on the proliferation and MMP-9 secretion of HaCaT cells treated with advanced glycation end product-bovine serum albumin (AGE-BSA), using CCK-8 western blot and MMP-9 enzyme-linked immunosorbent assay(ELISA). Next, the effect of ADSC-EVs on the healing, re-epithelialisation, collagen deposition, and MMP-9 concentration in diabetic wound fluids was evaluated in an immunodeficient mouse model via MMP-9 ELISA and haematoxylin and eosin, Masson’s trichrome, and immunofluorescence staining for MMP-9. Results: In vitro, ADSC-EVs promoted the proliferation and MMP-9 secretion of HaCaT cells.In vivo, ADSC-EVs accelerated diabetic wound healing by improving re-epithelialisation and collagen deposition and by inhibiting the expression of MMP-9. Conclusion: ADSC-EVs possessed the healing of diabetic wounds in a mouse model by inhibiting downregulating MMP-9 and improving collagen deposition.Thus ,ADSC-EVs are a promising candidate for the treatment of diabetic wounds .


2021 ◽  
Vol 12 (6) ◽  
pp. 7621-7632

Diabetes Mellitus is the most prevalent metabolic disorder that is increasing at an alarming rate worldwide. The unregulated glucose level leads to various types of health disorders, and one of the major diabetic complications is delayed wound healing. Due to the more side effects of synthetic drugs, there is a need to explore plants and their phytochemicals for medicinal purposes. It was found that Quercetin, a flavonoid, increases the rate of diabetic wound healing by enhancing the expression of SIRT1. This demands more insight towards Quercetin and its similar compounds, as it is hypothesized that similar compounds may have similar biological properties. Thus similarity searching was done to identify the most similar compounds of Quercetin, and then the molecular docking of the screened compounds was performed using AutoDock Vina. The unique ligands were docked into the active site of SIRT1 protein (PDB ID: 4ZZJ). The binding free energy of the interacting ligand with the protein was estimated. Six compounds were identified which possess the maximum structural similarity with Quercetin, and upon docking, it was found that gossypetin and herbacetin have similar binding modes and binding energy as that of Quercetin (-7.5 kcal/mol). Therefore, the hypothesis has been validated by in silico analysis. Our study identified two phytochemicals, Gossypetin, and Herbacetin which can prove beneficial for improving diabetic wound healing but needs to be validated further by in vitro and in vivo studies.


2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Nicolette N. Houreld

Impaired wound healing is a common complication associated with diabetes with complex pathophysiological underlying mechanisms and often necessitates amputation. With the advancement in laser technology, irradiation of these wounds with low-intensity laser irradiation (LILI) or phototherapy, has shown a vast improvement in wound healing. At the correct laser parameters, LILI has shown to increase migration, viability, and proliferation of diabetic cellsin vitro; there is a stimulatory effect on the mitochondria with a resulting increase in adenosine triphosphate (ATP). In addition, LILI also has an anti-inflammatory and protective effect on these cells. In light of the ever present threat of diabetic foot ulcers, infection, and amputation, new improved therapies and the fortification of wound healing research deserves better prioritization. In this review we look at the complications associated with diabetic wound healing and the effect of laser irradiation bothin vitroandin vivoin diabetic wound healing.


2021 ◽  
Vol 18 ◽  
Author(s):  
Saima Tufail ◽  
Muhammad Irfan Siddique ◽  
Muhammad Sarfraz ◽  
Muhammad Farhan Sohail ◽  
Muhammad Nabeel Shahid ◽  
...  

Introduction: The pleiotropic effects of statins are recently explored for wound healing through angiogenesis and lymph-angiogenesis that could be of great importance in diabetic wounds. Aim: Aim of the present study is to fabricate nanofilm embedded with simvastatin loaded chitosan nanoparticles (CS-SIM-NPs) has been reported herein to explore the efficacy of SIM in diabetic wound healing. Methods: The NPs, prepared via ionic gelation, were 173nm ± 2.645 in size with a zeta potential -0.299 ± 0.009 and PDI 0.051 ± 0.088 with excellent encapsulation efficiency (99.97%). The optimized formulation (CS: TPP, 1:1) that exhibited the highest drug release (91.64%) was incorporated into polymeric nanofilm (HPMC, Sodium alginate, PVA), followed by in vitro characterization. The optimized nanofilm was applied to the wound created on the back of diabetes-induced (with alloxan injection 120 mg/kg) albino rats. Results: The results showed significant (p < 0.05) improvement in the wound healing process compared to the diabetes-induced non-treated group. The results highlighted the importance of nanofilms loaded with SIM-NPs in diabetic wound healing through angiogenesis promotion at the wound site. Conclusion: Thus, CS-SIM-NPs loaded polymeric nanofilms could be an emerging diabetic wound healing agent in the industry of nanomedicines.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Ursula Hopfner ◽  
Matthias M. Aitzetmueller ◽  
Philipp Neßbach ◽  
Michael S. Hu ◽  
Hans-Guenther Machens ◽  
...  

Introduction. Although chronic wounds are a major personal and economic burden, treatment options are still limited. Among those options, adipose-derived stromal cell- (ASC-) based therapies rank as a promising approach but are restricted by the harsh wound environment. Here we use a commercially available fibrin glue to provide a deliverable niche for ASCs in chronic wounds. Material and Methods. To investigate the in vitro effect of fibrin glue, cultivation experiments were performed and key cytokines for regeneration were quantified. By using an established murine chronic diabetic wound-healing model, we evaluated the influence of fibrin glue spray seeding on cell survival (In Vivo Imaging System, IVIS), wound healing (wound closure kinetics), and neovascularization of healed wounds (CD31 immunohistochemistry). Results. Fibrin glue seeding leads to a significantly enhanced secretion of key cytokines (SDF-1, bFGF, and MMP-2) of human ASCs in vitro. IVIS imaging showed a significantly prolonged murine ASC survival in diabetic wounds and significantly accelerated complete wound closure in the fibrin glue seeded group. CD31 immunohistochemistry revealed significantly more neovascularization in healed wounds treated with ASCs spray seeded in fibrin glue vs. ASC injected into the wound bed. Conclusion. Although several vehicles have shown to successfully act as cell carrier systems in preclinical trials, regulatory issues have prohibited clinical usage for chronic wounds. By demonstrating the ability of fibrin glue to act as a carrier vehicle for ASCs, while simultaneously enhancing cellular regenerative function and viability, this study is a proponent of clinical translation for ASC-based therapies.


Sign in / Sign up

Export Citation Format

Share Document