scholarly journals The inhibition of circular RNA circNOLC1 by propofol/STAT3 attenuates breast cancer stem cells function via miR-365a-3p/STAT3 signaling

2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Yi-Ping Liu ◽  
Jin-Yu Heng ◽  
Xin-Yu Zhao ◽  
En-You Li

Abstract Background Breast cancer remains one of the most dreadful female malignancies globally, in which cancer stem cells (CSCs) play crucial functions. Circular RNAs have drawn great attention in cancer research area and propofol is a widely applied intravenous anesthetic agent. Methods: In the current study, we explored the function of circular RNA nucleolar and coiled-body phosphoprotein 1 (circNOLC1) in CSCs of breast cancer and the inhibitory impact of propofol on circNOLC1. Results The expression of circNOLC1 was induced in breast cancer tissues compared with the non-tumor tissues. The silencing of circNOLC1 was able to repress the viability of breast cancer cells. Meanwhile, the numbers of colony formation were suppressed by circNOLC1 knockdown in breast cancer cells. The inhibition of circNOLC1 reduced the invasion and migration ability of breast cancer cells. The mRNA and protein levels of E-cadherin were enhanced but Vimentin levels were reduced by the silencing of circNOLC1. The repression of circNOLC1 decreased the side population (SP) ratio in breast cancer cells. Meanwhile, the sphere formation ability of breast cancer cells was attenuated by the silencing of circNOLC1. The levels of ATP-binding cassette (ABC) superfamily G member 2 (ABCG2), c-Myc, B cell-specific Moloney murine leukemia virus integration site 1 (Bmi1), and SRY-box transcription factor 2 (Sox2) were repressed by the depletion of circNOLC1 in the cells. Regarding to the mechanism, circNOLC1 functioned as a competing endogenous RNAs (ceRNAs) for microRNA-365a-3p (miR-365a-3p) and the inhibition of miR-365a-3p rescued circNOLC1 depletion-repressed proliferation and cancer stem cell activity of breast cancer. MiR-365a-3p targeted signal transducer and activator of transcription 3 (STAT3) in breast cancer cells and circNOLC1 enhanced STAT3 expression by sponging miR-365a-3p. The overexpression of STAT3 could reverse miR-365a-3p or circNOLC1 depletion-inhibited proliferation and cancer stem cell properties of breast cancer. Interestingly, the expression of circNOLC1 and STAT3 was repressed by the treatment of propofol. The enrichment of STAT3 on circNOLC1 promoter was inhibited by propofol. The expression of circNOLC1 was suppressed by the silencing of STAT3 in the cells. The inhibition of circNOLC1 expression by propofol was rescued under the co-treatment of STAT3 overexpression. The overexpression of circNOLC1 rescued propofol-attenuated proliferation and cancer stem cell functions in vitro and in vivo. Conclusions Thus, we concluded that circNOLC1 contributes to CSCs properties and progression of breast cancer by targeting miR-365a-3p /STAT3 axis and propofol inhibited circNOLC1 by repressing STAT3 in a feedback mechanism.

2015 ◽  
Vol 112 (45) ◽  
pp. E6215-E6223 ◽  
Author(s):  
Huimin Zhang ◽  
Haiquan Lu ◽  
Lisha Xiang ◽  
John W. Bullen ◽  
Chuanzhao Zhang ◽  
...  

Increased expression of CD47 has been reported to enable cancer cells to evade phagocytosis by macrophages and to promote the cancer stem cell phenotype, but the molecular mechanisms regulating CD47 expression have not been determined. Here we report that hypoxia-inducible factor 1 (HIF-1) directly activates transcription of the CD47 gene in hypoxic breast cancer cells. Knockdown of HIF activity or CD47 expression increased the phagocytosis of breast cancer cells by bone marrow-derived macrophages. CD47 expression was increased in mammosphere cultures, which are enriched for cancer stem cells, and CD47 deficiency led to cancer stem cell depletion. Analysis of datasets derived from thousands of patients with breast cancer revealed that CD47 expression was correlated with HIF target gene expression and with patient mortality. Thus, CD47 expression contributes to the lethal breast cancer phenotype that is mediated by HIF-1.


2020 ◽  
Vol 49 (14) ◽  
pp. 4211-4215
Author(s):  
Arvin Eskandari ◽  
Arunangshu Kundu ◽  
Alice Johnson ◽  
Sanjib Karmakar ◽  
Sushobhan Ghosh ◽  
...  

A multi-nuclear, triangular-shaped palladium(ii) complex is shown to equipotently kill bulk cancer cells and cancer stem cells (CSCs) in the micromolar range.


2019 ◽  
Vol 48 (18) ◽  
pp. 5892-5896 ◽  
Author(s):  
Puyi Zheng ◽  
Arvin Eskandari ◽  
Chunxin Lu ◽  
Kristine Laws ◽  
Leigh Aldous ◽  
...  

Copper(ii) coordination complexes, 1 and 2, containing nonsteroidal anti-inflammatory drugs (NSAIDs) potently kill breast cancer stem cells (CSCs) and bulk breast cancer cells.


2015 ◽  
Vol 357 (1) ◽  
pp. 206-218 ◽  
Author(s):  
Saeb Aliwaini ◽  
Jade Peres ◽  
Wendy L. Kröger ◽  
Angelique Blanckenberg ◽  
Jo de la Mare ◽  
...  

2017 ◽  
Vol 46 (38) ◽  
pp. 12785-12789 ◽  
Author(s):  
C. Lu ◽  
K. Laws ◽  
A. Eskandari ◽  
K. Suntharalingam

Tetranuclear copper(ii) complexes containing multiple diclofenac and Schiff base moieties,1–4, are shown to kill bulk cancer cells and cancer stem cells (CSCs) with low micromolar potency.


2021 ◽  
Author(s):  
Ningwei Fu ◽  
Ning Fan ◽  
Wenchao Luo ◽  
Lijia Lv ◽  
Jing Li ◽  
...  

Abstract Purpose: TFEB is a key regulator of autophagy-lysosomal biogenesis pathways, while its dysregulation is highly prevalent in various human cancers, but the specific contribution to breast cancer remains poorly understood. The main purpose of this study is to explore the role of TFEB in breast cancer proliferation, metastasis and maintaining breast cancer stem cells (BCSCs) traits, thus uncovering its underlying mechanism.Methods: Bioinformatics, western blotting and immunohistochemical staining were applied to analyze the expression of TFEB in breast cancer. Stable down-regulation TFEB cells were established in MCF-7 and MDA-MB-231 breast cancer cell lines. MTT, clone formation, wound healing, transwell and 3D tumor invasion assays were used to evaluate the proliferation, migration and invasion ability of breast cancer cells. Mammosphere formation, immunocytochemical (ICC) staining were used to detect the effect of down-regulating TFEB on breast cancer stem cells. Results: we demonstrated that higher expression of TFEB was found in breast cancer. TFEB depletion had inhibitory effects on cellular proliferation, migration and invasion of breast cancer cells. Moreover, knockdown TFEB decreased mammosphere formation ability of BCSCs and expression of cancer stem cell markers. Autophagy-lysosomal related proteins were decreased by down regulation of TFEB. Conclusion: we uncovered a critical role of TFEB in breast cancer proliferation and metastasis, and BCSCs self-renewal and stemness. The underlying mechanisms involve in maintaining BCSCs traits, and dysregulating lysosome functions.


Cancers ◽  
2021 ◽  
Vol 13 (17) ◽  
pp. 4350
Author(s):  
Jessica Castro ◽  
Giusy Tornillo ◽  
Gerardo Ceada ◽  
Beatriz Ramos-Neble ◽  
Marlon Bravo ◽  
...  

Despite the significant advances in cancer research made in recent years, this disease remains one of the leading causes of death worldwide. In part, this is due to the fact that after therapy, a subpopulation of self-renewing tumor cells can survive and promote cancer relapse, resistance to therapies and metastasis. Targeting these cancer stem cells (CSCs) is therefore essential to improve the clinical outcome of cancer patients. In this sense, multi-targeted drugs may be promising agents targeting CSC-associated multifocal effects. We have previously constructed different human pancreatic ribonuclease (RNase) variants that are cytotoxic for tumor cells due to a non-classical nuclear localization signal introduced in their sequence. These cytotoxic RNases affect the expression of multiple genes involved in deregulated metabolic and signaling pathways in cancer cells and are highly cytotoxic for multidrug-resistant tumor cell lines. Here, we show that these cytotoxic nuclear-directed RNases are highly selective for tumor cell lines grown in 3D, inhibit CSCs’ development and diminish the self-renewal capacity of the CSCs population. Moreover, these human RNase variants reduce the migration and invasiveness of highly invasive breast cancer cells and downregulate N-cadherin expression.


Sign in / Sign up

Export Citation Format

Share Document