scholarly journals Functional characteristics of Th1, Th17, and ex-Th17 cells in EAE revealed by intravital two-photon microscopy

2020 ◽  
Vol 17 (1) ◽  
Author(s):  
Julia Loos ◽  
Samantha Schmaul ◽  
Theresa Marie Noll ◽  
Magdalena Paterka ◽  
Miriam Schillner ◽  
...  

Abstract Background T helper (Th) 17 cells are a highly plastic subset of T cells, which in the context of neuroinflammation, are able to acquire pathogenic features originally attributed to Th1 cells (resulting in so called ex-Th17 cells). Thus, a strict separation between the two T cell subsets in the context of experimental autoimmune encephalomyelitis (EAE) is difficult. High variability in culture and EAE induction protocols contributed to previous conflicting results concerning the differential contribution of Th1 and Th17 cells in EAE. Here, we systematically evaluate the role of different T cell differentiation and transfer protocols for EAE disease development and investigate the functional dynamics of encephalitogenic T cells directly within the inflamed central nervous system (CNS) tissue. Methods We compiled the currently used EAE induction protocols reported in literature and investigated the influence of the different Th1 and Th17 differentiation protocols as well as EAE induction protocols on the EAE disease course. Moreover, we assessed the cytokine profile and functional dynamics of both encephalitogenic Th1 and Th17 cells in the inflamed CNS using flow cytometry and intravital two-photon laser scanning microscopy. Lastly, we used astrocyte culture and adoptive transfer EAE to evaluate the impact of Th1 and Th17 cells on astrocyte adhesion molecule expression in vitro and in vivo. Results We show that EAE courses are highly dependent on in vitro differentiation and transfer protocols. Moreover, using genetically encoded reporter mice (B6.IL17A-EGFP.acRFP x 2d2/2d2.RFP), we show that the motility of interferon (IFN)γ-producing ex-Th17 cells more closely resembles Th1 cells than Th17 cells in transfer EAE. Mechanistically, IFNγ-producing Th1 cells selectively induce the expression of cellular adhesion molecules I-CAM1 while Th1 as well as ex-Th17 induce V-CAM1 on astrocytes. Conclusions The behavior of ex-Th17 cells in EAE lesions in vivo resembles Th1 rather than Th17 cells, underlining that their change in cytokine production is associated with functional phenotype alterations of these cells.

2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A738-A738
Author(s):  
Bryan Grogan ◽  
Reice James ◽  
Michelle Ulrich ◽  
Shyra Gardai ◽  
Ryan Heiser ◽  
...  

BackgroundRegulatory T cells (Tregs) play an important role in maintaining immune homeostasis, preventing excessive inflammation in normal tissues. In cancer, Tregs hamper anti-tumor immunosurveillance and facilitate immune evasion. Selective targeting of intratumoral Tregs is a potentially promising treatment approach. Orthogonal evaluation of tumor-infiltrating lymphocytes (TILs) in solid tumors in mice and humans have identified CCR8, and several tumor necrosis family receptors (TNFRs), including TNFSFR8 (CD30), as receptors differentially upregulated on intratumoral Tregs compared to normal tissue Tregs and other intratumoral T cells, making these intriguing therapeutic targets.Brentuximab vedotin (BV) is approved for classical Hodgkin lymphoma (cHL) across multiple lines of therapy including frontline use in stage III/IV cHL in combination with doxorubicin, vinblastine, and dacarbazine. BV is also approved for certain CD30-expressing T-cell lymphomas. BV is comprised of a CD30-directed monoclonal antibody conjugated to the highly potent microtubule-disrupting agent monomethyl auristatin E (MMAE).The activity of BV in lymphomas is thought to primarily result from tumor directed intracellular MMAE release, leading to mitotic arrest and apoptotic cell death.The role CD30 plays in normal immune function is unclear, with both costimulatory and proapoptotic roles described. CD30 is transiently upregulated following activation of memory T cells and expression has been linked to highly activated/suppressive IRF4+ effector Tregs.MethodsHere we evaluated the activity of BV on CD30-expressing T cell subsets in vitro and in vivo.ResultsTreatment of enriched T cell subsets with clinically relevant concentrations of BV drove selective depletion of CD30-expressing Tregs > CD30-expressingCD4+ T memory cells, with minimal effects on CD30-expressing CD8+ T memory cells. In a humanized xeno-GVHD model, treatment with BV selectively depleted Tregs resulting in accelerated wasting and robust T cell expansion. The observed differential activity on Tregs is likely attributable to significant increases in CD30 expression and reduced efflux pump activity relative to other T cell subsets. Interestingly, blockade of CD25 signaling prevents CD30 expression on T cell subsets without impacting proliferation, suggesting a link between CD25, the high affinity IL-2 receptor, and CD30 expression.ConclusionsTogether, these data suggest that BV may have an immunomodulatory effect through selective depletion of highly suppressive CD30-expressing Tregs.AcknowledgementsThe authors would like to thank Michael Harrison, PharmD for their assistance in abstract preparation.Ethics ApprovalAnimals studies were approved by and conducted in accordance with Seattle Genetics Institutional Care and Use Committee protocol #SGE-024.


2019 ◽  
Vol 30 (8) ◽  
pp. 1439-1453 ◽  
Author(s):  
Julia Hagenstein ◽  
Simon Melderis ◽  
Anna Nosko ◽  
Matthias T. Warkotsch ◽  
Johannes V. Richter ◽  
...  

BackgroundNew therapies blocking the IL-6 receptor (IL-6R) have recently become available and are successfully being used to treat inflammatory diseases like arthritis. Whether IL-6 blockers may help patients with kidney inflammation currently remains unknown.MethodsTo learn more about the complex role of CD4+ T cell-intrinsic IL-6R signaling, we induced nephrotoxic nephritis, a mouse model for crescentic GN, in mice lacking T cell–specific IL-6Ra. We used adoptive transfer experiments and studies in reporter mice to analyze immune responses and Treg subpopulations.ResultsLack of IL-6Ra signaling in mouse CD4+ T cells impaired the generation of proinflammatory Th17 cells, but surprisingly did not ameliorate the course of GN. In contrast, renal damage was significantly reduced by restricting IL-6Ra deficiency to T effector cells and excluding Tregs. Detailed studies of Tregs revealed unaltered IL-10 production despite IL-6Ra deficiency. However, in vivo and in vitro, IL-6Ra classic signaling induced RORγt+Foxp3+ double-positive Tregs (biTregs), which carry the trafficking receptor CCR6 and have potent immunoregulatory properties. Indeed, lack of IL-6Ra significantly reduced Treg in vitro suppressive capacity. Finally, adoptive transfer of T cells containing IL-6Ra−/− Tregs resulted in severe aggravation of GN in mice.ConclusionsOur data refine the old paradigm, that IL-6 enhances Th17 responses and suppresses Tregs. We here provide evidence that T cell–intrinsic IL-6Ra classic signaling indeed induces the generation of Th17 cells but at the same time highly immunosuppressive RORγt+ biTregs. These results advocate caution and indicate that IL-6–directed therapies for GN need to be cell-type specific.


2021 ◽  
Author(s):  
Marie Goepp ◽  
Siobhan Crittenden ◽  
You Zhou ◽  
Adriano G Rossi ◽  
Shuh Narumiya ◽  
...  

Background and Purpose: Regulatory T (Treg) cells are essential for control of inflammatory processes by suppressing Th1 and Th17 cells. The bioactive lipid mediator prostaglandin E2 (PGE2) promotes inflammatory Th1 and Th17 cells and exacerbates T cell-mediated autoimmune diseases. However, the actions of PGE2 on the development and function of Treg cells, particularly under inflammatory conditions, are debated. In this study, we examined whether PGE2 had a direct action on T cells to modulate de novo differentiation of Treg cells. Experimental Approach: We employed an in vitro T cell culture system of TGF-β-dependent Treg induction from naive T cells. PGE2 and selective agonists for its receptors, and other small molecular inhibitors were used. Mice with specific lack of EP4 receptors in T cells were used to assess Treg cell differentiation in vivo. Human peripheral blood T cells from healthy individuals were used to induce differentiation of inducible Treg cells. Key Results: TGF-β-induced Foxp3 expression and Treg cell differentiation in vitro was markedly inhibited by PGE2, which was due to interrupting TGF-β signalling. EP2 or EP4 agonism mimicked suppression of Foxp3 expression in WT T cells, but not in T cells deficient in EP2 or EP4, respectively. Moreover, deficiency of EP4 in T cells impaired iTreg cell differentiation in vivo. PGE2 also appeared to inhibit the conversion of human iTreg cells. Conclusion and Implications: Our results show a direct, negative regulation of iTreg cell differentiation by PGE2, highlighting the potential for selectively targeting the PGE2-EP2/EP4 pathway to control T cell-mediated inflammation.


2021 ◽  
Vol 22 (17) ◽  
pp. 9584
Author(s):  
Yi-Hsing Chen ◽  
Sue Lightman ◽  
Virginia L. Calder

Non-infectious uveitis (NIU) is a potentially sight-threatening disease. Effector CD4+ T cells, especially interferon-γ-(IFNγ) producing Th1 cells and interleukin-17-(IL-17) producing Th17 cells, are the major immunopathogenic cells, as demonstrated by adoptive transfer of disease in a model of experimental autoimmune uveitis (EAU). CD4+FoxP3+CD25+ regulatory T cells (Tregs) were known to suppress function of effector CD4+ T cells and contribute to resolution of disease. It has been recently reported that some CD4+ T-cell subsets demonstrate shared phenotypes with another CD4+ T-cell subset, offering the potential for dual function. For example, Th17/Th1 (co-expressing IFNγ and IL-17) cells and Th17/Treg (co-expressing IL-17 and FoxP3) cells have been identified in NIU and EAU. In this review, we have investigated the evidence as to whether these ‘plastic CD4+ T cells’ are functionally active in uveitis. We conclude that Th17/Th1 cells are generated locally, are resistant to the immunosuppressive effects of steroids, and contribute to early development of EAU. Th17/Treg cells produce IL-17, not IL-10, and act similar to Th17 cells. These cells were considered pathogenic in uveitis. Future studies are needed to better clarify their function, and in the future, these cell subsets may in need to be taken into consideration for designing treatment strategies for disease.


2017 ◽  
Vol 35 (7_suppl) ◽  
pp. 150-150
Author(s):  
Sergei Kusmartsev ◽  
Johaness Vieweg ◽  
Victor Prima

150 Background: NKG2D is a lectin-like type 2 transmembrane receptor that expressed by natural killer cells and some T cell subsets. Stimulation of NKG2D receptor with specific agonistic ligands produces activating signals through signaling adaptor protein DAP10 leading to the enhanced cytokine production, proliferation, and cytotoxicity against tumor cells. There is strong evidence that NKG2D ligands are expressed in many human tumors, including melanoma, leukemia, myeloma, glioma, and carcinomas of the prostate, breast, lung, and colon. Recent studies also demonstrated that T cells bearing chimeric antigen receptor (CAR) NKG2D linked to CD3ζ (zeta) chain produce marked in vitro and in vivo anti-tumor effects. The aim of current study was to determine whether human T cells bearing chimeric antigen receptor (CAR) NKGD2 linked to CD3ε (epsilon) chain could be activated by the NKG2D-specific stimulation and able to kill human cancer cells. Given the important role of CD3ε in activation and survival of T cells, we hypothesized that NKG2D-CDε-bearing T cells could exert strong in vitro and in vivo anti-tumor effects. Methods: NKG2D CAR was produced by linking human NKG2D to DAP10 and the cytoplasmic portion of the CD3ε chain. Original full-length human cDNA clones were obtained from NIH Mammalian Gene Collection (MGC). Functional domain analysis and oligonucleotide design in the in-Fusion system of DNA cloning (Clontech) was used to generate the retroviral expression constructs. Results: Human PBMC-derived T cells were retrovirally transduced with newly generated NKG2D-CD3ε CAR DNA construct. These NKG2D CAR-expressing human T cells responded to NKG2D-specific activation by producing IFN-γ and exhibited significant cellular cytotoxicity against human tumor cells in vitro. In vivo studies demonstrated that NKG2D-CD3ε-bearing cells are capable of inhibiting growth of DU-145 human prostate cancer in the immunodeficient mice. Conclusions: Collectively, our data indicate the feasibility of developing chimeric antigen receptor NKG2D-CD3ε for T cells and suggest that adoptive transfer of T cells bearing NKG2D-CD3ε CAR could be potentially effective for immunotherapy of cancer patients.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 450-450
Author(s):  
Rozemarijn S. van Rijn ◽  
Elles R. Simonetti ◽  
Gert Storm ◽  
Mark Bonyhadi ◽  
Anton Hagenbeek ◽  
...  

Abstract T cells retrovirally modified to express therapeutic genes encoding cytokines, exogenous TCRs or suicide molecules represent a novel class of immune therapeutics of great potency. However, recent clinical trials using retrovirally-modified T cells have indicated that T cells exhibit a diminished reactivity upon ex vivo manipulation. In addition, virus-specific memory T cells seem to be lost during gene transfer. In a BNML rat model we have shown that the culture procedure is one of the critical parameters. To preserve T cell reactivity, reliable models are required which permit readout of human T cell activity. We recently developed a huPBMC-RAG2−/−γc−/− mouse model for xenogeneic graft-versus-host disease (xGVHD), in which iv injection of 15 x 106 human T cells into RAG2−/−γc−/− mice consistently leads to high level engraftment and lethal xGVHD within 3 weeks in 80% of mice (van Rijn et al, Blood 2003). We have now used this model to analyze in vivo functionality of human T cells following different ex vivo culture procedures. For this, we cultured human T cells for 7 days with either of the two currently available clinically applicable stimulation conditions: 1) via CD3 and 2) via CD3/CD28. In addition, we included CD3/CD28/4-1BB stimulation to explore the effect of extensive costimulation. Mice were injected with escalating doses T cells. HuCD45+ cells in peripheral blood were measured by FACS. Lethal xGVHD occurred at only 6 times (90.106) the dose of fresh cells for CD3-stimulated T cells and 3 times for CD3/28- or CD3/28/4-1BB-stimulated cells. About 20% of surviving mice developed chronic xGVHD, independent of culture method. While lethal xGVHD was always associated with very high levels of engraftment (up to 95%) engraftment levels in chronic mice ranged from 1–75%. To compare the impact of the different culture conditions on in vivo T cell function, we analyzed engraftment potential. The fraction of huCD45+ cells was plotted against the time and the areas under the curves were compared. Based on a total of 68 mice, statistical analysis showed a 2-fold improvement of engraftment potential for C28-costimulated human T cells compared to CD3-stimulated cells (P<0.0001). Additional ligation of 4-1BB did not increase engraftment potential. In addition, different T cell subsets (naïve, memory, effector) were monitored based on the combined expression of CD45RA, CD27 and CCR7. For all primary T cells and variably cultured T cells, a strikingly similar pattern was observed in vivo. After 3 weeks mainly effector and memory effector T cells (both CD4+ and CD8+) could be detected, suggesting a (xeno-)antigen-driven survival and expansion. This was a very consistent observation independent of donor, culture condition, engraftment level or severity of disease. In conclusion, in vitro costimulation preserves in vivo functionality of human T cells and should therefore be included in future clinical protocols for ex vivo manipulation of T cells. These data show the feasibility to use the huPBMC-RAG2−/−γc−/− model for in vivo evaluation of in vitro effects on human T cells. This model is the most sensitive to date for in vivo evaluation of human T cells and will be a promising new tool for the study of human T cells in, for instance, autoimmune disease, cancer and infectious diseases like AIDS.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3482-3482
Author(s):  
Minghui Li ◽  
Kai Sun ◽  
Mark Hubbard ◽  
Doug Redelman ◽  
Angela Panoskaltsis-Mortari ◽  
...  

Abstract IL-17-producing CD4 T cells (Th17) are a recently identified T helper subset that plays a role in mediating host defense to extracellular bacteria infections and is involved in the pathogenesis of many autoimmune diseases. In vitro induction of IL-17 in murine CD4+ T cells has been shown to be dependent on the presence of the proinflammatory cytokines TGF-β and IL-6 whereas IFNγ can suppress the development of Th17 cells. In the current study, we examined the roles of TNFα and IFNγ on IL-17 production by purified T cells in vitro and in vivo after allogeneic bone marrow transplantation (BMT). We present findings that expression of TNFα by the T cell itself is necessary for optimal development of Th17 under in vitro polarizing conditions. A novel role for T cell-derived TNFα in Th17 induction was observed when in vitro polarization of Tnf−/−CD4+ T cells resulted in marked reductions in IL-17+CD4+ T cells compared to Tnf+/+CD4+ T cells. In marked contrast, T cell-derived IFNγ markedly inhibited Th17 development as more IL-17+CD4+ T cells were found in Ifnγ−/−CD4+ T cells than in Ifnγ+/+CD4+ T cells, and of particular interest was the dramatic increase in IL-17+CD8+ cells from Ifnγ−/− mice. To determine if T cell-derived TNFα or IFNγ can regulate Th17 development in vivo we examined the differentiation of alloreactive donor T cells following allogeneic BMT. We have found that donor-derived Th17 cells can be found in lymphoid tissues and GVHD-affected organs after allogeneic BMT. However, transfer of Tnf−/− CD4+ T cells after allogeneic BMT resulted in marked reductions in Th17 cells in the spleen (18×103 vs 7×103, P<0.05). In agreement with the in vitro data and in contrast to what was observed with transfer of Tnf−/− CD4+ T cells, transfer of donor Ifnγ−/− T cells resulted in marked increases in not only IL-17+CD4+ but also IL-17+CD8+ T cells infiltrating the liver (7×103 vs 14×103, P<0.05; 4×104 vs 12.5×104, P<0.05). These results suggest that the donor T cell-derived TNFα and IFNγ opposingly regulate IL-17 induction of both CD4+ and CD8+ T cells in vitro and after allogeneic BMT which correlates with GVHD pathology.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2766-2766
Author(s):  
Seema Rawal ◽  
Nathan Fowler ◽  
Min Zhang ◽  
Zhiqiang Wang ◽  
Tariq Muzzafar ◽  
...  

Abstract Abstract 2766 Background: Lenalidomide plus rituximab therapy is a highly effective and well-tolerated therapy in patients (pts) with follicular lymphoma (FL). In a Phase II trial, this combination induced a complete remission rate of 87% in pts with advanced stage untreated FL (Fowler et al, Ann Oncol, 2011; 22; suppl 4:137). A randomized Phase III trial was recently initiated to compare this combination with current standard of care therapies in pts with FL. Although lenalidomide is known to be an immunomodulatory drug with effects on a variety of immune cells in vitro, its effects have not been well studied in vivo in humans. Understanding the in vivo effects of lenalidomide could lead to novel combination strategies to enhance the efficacy and improve clinical outcome in FL and other malignancies. Methods: Pts received lenalidomide 20 mg/day on days 1–21 of each 28-day cycle and rituximab was given at 375 mg/m2on day 1 of each cycle. Peripheral blood mononuclear cells (PBMC) were phenotyped by multiparametric flow cytometry at baseline, on cycle 2 day 15 (C2D15), and at the end of cycle 6. In addition, peripheral blood (PB) samples were collected in PAXgene Blood RNA tubes at baseline and on C2D15 for whole genome gene expression profiling (GEP). Results: Immunophenotyping of baseline and end of cycle 6 PBMC (n=17) showed that the percentages and absolute numbers of CD3+, CD4+, CD8+, TCRgd, and Foxp3+ regulatory T cells; and NK, NKT, and myeloid dendritic cells were not significantly different between the two time points. However, a significant increase in CD4+CD45RO+ (p<0.01) and CD8+CD45RO+ (p=0.04) memory T cells was observed post-therapy. Further characterization of CD4+ T cells showed a significant increase in central memory T cells (p<0.001) and a decrease in naïve (p<0.01) and terminally differentiated (p<0.01) T cells, but no change in effector memory T cells. The increase in CD8+ central memory T cells was marginally significant (p=0.06). Plasmacytoid dendritic cells (PDC) were also significantly increased (p=0.02). In contrast, no such changes in T cell subsets or PDC were observed in FL pts (n=9) treated with 6 cycles of R-CHOP chemotherapy that received equal number of rituximab doses and analyzed at similar time points (baseline and end of cycle 6). To understand lenalidomide-induced changes on a molecular level, we compared GEP data at C2D15 vs. baseline for 7 pairs of PB samples. The paired significance analysis of microarrays method, based on Student's t test, identified 1,748 differentially expressed genes (DEG; 713 up, 1035 down), without a fold-change threshold, in C2D15 samples vs. baseline. Results were influenced by rituximab-induced depletion of B cells in C2D15 samples, but there were many changes that suggested altered PBMC physiology. Noteworthy up-regulated genes (>1.5 fold) included genes associated with T and NK cell activation including BATF, CCR2, CD1B, CD2, CD160, CTLA4, CXCR3, ICOS, and LAG3; and CD163 and CD209, phagocytic receptors expressed on monocytes/macrophages. Down-regulated genes (>1.5 fold) included CXCR5, which mediates B cell migration into follicles; and IL1B and TNFSF13B (BAFF), which are produced by activated macrophages and induce B cell proliferation. Gene set enrichment analysis of all GEP results, and Ingenuity Pathway Analysis of DEGs, indicated up regulation of multiple pathways and processes including ribosomal and mitochondrial components involved in translation and oxidative phosphorylation, CTLA4 signaling in cytotoxic T cells, and differentiation and signaling by ICOS and CD28 in T helper cells. We confirmed up regulation of CTLA4, ICOS, and LAG3 at the protein level in C2D15 PBMC by flow cytometry. Furthermore, treatment of PBMC derived from untreated FL pts with lenalidomide in vitro resulted in up regulation of these molecules in T and/or NK cells consistent with our in vivo results. Conclusions: In FL pts, lenalidomide induced multiple changes in the immune system including increases in PDC and memory T cell subsets, activation of T and NK cells, and down-regulation of certain genes mediating B cell migration and proliferation. These results provide insights into the mechanism of action of lenalidomide and suggest that it can be combined with other immunostimulatory agents such as therapeutic vaccines, adoptive T cell therapy strategies, and immune checkpoint inhibitors to further enhance its efficacy in FL and other malignancies. Disclosures: Fowler: Celgene: Research Funding. Heise:Celgene Corporation: Employment, Equity Ownership. Lacerte:Celgene: Honoraria. Samaniego:Celgene: Research Funding. Neelapu:Celgene Corporation: Research Funding.


2014 ◽  
Vol 306 (11) ◽  
pp. E1322-E1329 ◽  
Author(s):  
Luciana Besedovsky ◽  
Barbara Linz ◽  
Stoyan Dimitrov ◽  
Sabine Groch ◽  
Jan Born ◽  
...  

Glucocorticoids are well known to affect T cell migration, leading to a redistribution of the cells from blood to the bone marrow, accompanied by a concurrent suppression of lymph node homing. Despite numerous studies in this context, with most of them employing synthetic glucocorticoids in nonphysiological doses, the mechanisms of this redistribution are not well understood. Here, we investigated in healthy men the impact of cortisol at physiological concentrations on the expression of different migration molecules on eight T cell subpopulations in vivo and in vitro. Hydrocortisone (cortisol, 22 mg) infused during nocturnal rest when endogenous cortisol levels are low, compared with placebo, differentially reduced numbers of T cell subsets, with naive CD4+ and CD8+ subsets exhibiting the strongest reduction. Hydrocortisone in vivo and in vitro increased CXCR4 expression, which presumably mediates the recruitment of T cells to the bone marrow. Expression of the lymph node homing receptor CD62L on total CD3+ and CD8+ T cells appeared reduced following hydrocortisone infusion. However, this was due to a selective extravasation of CD62L+ T cell subsets, as hydrocortisone affected neither CD62L expression on a subpopulation level nor CD62L expression in vitro. Corresponding results in the opposite direction were observed after blocking of endogenous cortisol synthesis by metyrapone. CCR7, another lymph node homing receptor, was also unaffected by hydrocortisone in vitro. Thus, cortisol seems to redirect T cells to the bone marrow by upregulating their CXCR4 expression, whereas its inhibiting effect on T cell homing to lymph nodes is apparently regulated independently of the expression of classical homing receptors.


2010 ◽  
Vol 30 (20) ◽  
pp. 4877-4889 ◽  
Author(s):  
Pilar Martín ◽  
Manuel Gómez ◽  
Amalia Lamana ◽  
Arantxa Cruz-Adalia ◽  
Marta Ramírez-Huesca ◽  
...  

ABSTRACT T-cell differentiation involves the early decision to commit to a particular pattern of response to an antigen. Here, we show that the leukocyte activation antigen CD69 limits differentiation into proinflammatory helper T cells (Th17 cells). Upon antigen stimulation in vitro, CD4+ T cells from CD69-deficient mice generate an expansion of Th17 cells and the induction of greater mRNA expression of interleukin 17 (IL-17), IL 23 receptor (IL-23R), and the nuclear receptor retinoic acid-related orphan receptor γt (RORγt). In vivo studies with CD69-deficient mice bearing OTII T-cell receptors (TCRs) specific for OVA peptide showed a high proportion of antigen-specific Th17 subpopulation in the draining lymph nodes, as well as in CD69-deficient mice immunized with type II collagen. Biochemical analysis demonstrated that the CD69 cytoplasmic tail associates with the Jak3/Stat5 signaling pathway, which regulates the transcription of RORγt and, consequently, differentiation toward the Th17 lineage. Functional experiments in Th17 cultures demonstrated that the selective inhibition of Jak3 activation enhanced the transcription of RORγt. Moreover, the addition of exogenous IL-2 restored Stat5 phosphorylation and inhibited the enhanced Th17 differentiation in CD69-deficient cells. These results support the early activation receptor CD69 as an intrinsic modulator of the T-cell differentiation program that conditions immune inflammatory processes.


Sign in / Sign up

Export Citation Format

Share Document