scholarly journals NUCKS1, a novel Tat coactivator, plays a crucial role in HIV-1 replication by increasing Tat-mediated viral transcription on the HIV-1 LTR promoter

Retrovirology ◽  
2014 ◽  
Vol 11 (1) ◽  
Author(s):  
Hye-Young Kim ◽  
Byeong-Sun Choi ◽  
Sung Soon Kim ◽  
Tae-Young Roh ◽  
Jihwan Park ◽  
...  
2015 ◽  
Vol 43 (18) ◽  
pp. 8884-8897 ◽  
Author(s):  
Elena Tosoni ◽  
Ilaria Frasson ◽  
Matteo Scalabrin ◽  
Rosalba Perrone ◽  
Elena Butovskaya ◽  
...  

Abstract Folding of the LTR promoter into dynamic G-quadruplex conformations has been shown to suppress its transcriptional activity in HIV-1. Here we sought to identify the proteins that control the folding of this region of proviral genome by inducing/stabilizing G-quadruplex structures. The implementation of electrophorethic mobility shift assay and pull-down experiments coupled with mass spectrometric analysis revealed that the cellular protein nucleolin is able to specifically recognize G-quadruplex structures present in the LTR promoter. Nucleolin recognized with high affinity and specificity the majority, but not all the possible G-quadruplexes folded by this sequence. In addition, it displayed greater binding preference towards DNA than RNA G-quadruplexes, thus indicating two levels of selectivity based on the sequence and nature of the target. The interaction translated into stabilization of the LTR G-quadruplexes and increased promoter silencing activity; in contrast, disruption of nucleolin binding in cells by both siRNAs and a nucleolin binding aptamer greatly increased LTR promoter activity. These data indicate that nucleolin possesses a specific and regulated activity toward the HIV-1 LTR promoter, which is mediated by G-quadruplexes. These observations provide new essential insights into viral transcription and a possible low mutagenic target for antiretroviral therapy.


2016 ◽  
Vol 91 (1) ◽  
Author(s):  
Chuan Li ◽  
Hai-Bo Wang ◽  
Wen-Dong Kuang ◽  
Xiao-Xin Ren ◽  
Shu-Ting Song ◽  
...  

ABSTRACT HIV-1 latency is characterized by reversible silencing of viral transcription driven by the long terminal repeat (LTR) promoter of HIV-1. Cellular and viral factors regulating LTR activity contribute to HIV-1 latency, and certain repressive cellular factors modulate viral transcription silencing. Nef-associated factor 1 (Naf1) is a host nucleocytoplasmic shuttling protein that regulates multiple cellular signaling pathways and HIV-1 production. We recently reported that nuclear Naf1 promoted nuclear export of unspliced HIV-1 gag mRNA, leading to increased Gag production. Here we demonstrate new functions of Naf1 in regulating HIV-1 persistence. We found that Naf1 contributes to the maintenance of HIV-1 latency by inhibiting LTR-driven HIV-1 gene transcription in a nuclear factor kappa B-dependent manner. Interestingly, Naf1 knockdown significantly enhanced viral reactivation in both latently HIV-1-infected Jurkat T cells and primary central memory CD4+ T cells. Furthermore, Naf1 knockdown in resting CD4+ T cells from HIV-1-infected individuals treated with antiretroviral therapy significantly increased viral reactivation upon T-cell activation, suggesting an important role of Naf1 in modulating HIV-1 latency in vivo. Our findings provide new insights for a better understanding of HIV-1 latency and suggest that inhibition of Naf1 activity to activate latently HIV-1-infected cells may be a potential therapeutic strategy. IMPORTANCE HIV-1 latency is characterized mainly by a reversible silencing of LTR promoter-driven transcription of an integrated provirus. Cellular and viral proteins regulating LTR activity contribute to the modulation of HIV-1 latency. In this study, we found that the host protein Naf1 inhibited HIV-1 LTR-driven transcription of HIV genes and contributed to the maintenance of HIV-1 latency. Our findings provide new insights into the effects of host modulation on HIV-1 latency, which may lead to a potential therapeutic strategy for HIV persistence by targeting the Naf1 protein.


2000 ◽  
Vol 74 (10) ◽  
pp. 4666-4671 ◽  
Author(s):  
Hal P. Bogerd ◽  
Heather L. Wiegand ◽  
Paul D. Bieniasz ◽  
Bryan R. Cullen

ABSTRACT Transcriptional transactivation of the human immunodeficiency virus type 1 (HIV-1) long terminal repeat (LTR) promoter element by the essential viral Tat protein requires recruitment of positive transcription elongation factor b (P-TEFb) to the viral TAR RNA target. The recruitment of P-TEFb, which has been proposed to be necessary and sufficient for activation of viral gene expression, is mediated by the highly cooperative interaction of Tat and cyclin T1, an essential component of P-TEFb, with the HIV-1 TAR element. Species, such as rodents, that encode cyclin T1 variants that are unable to support TAR binding by the Tat-cyclin T1 heterodimer are also unable to support HIV-1 Tat function. In contrast, we here demonstrate that the bovine immunodeficiency virus (BIV) Tat protein is fully able to bind to BIV TAR both in vivo and in vitro in the absence of any cellular cofactor. Nevertheless, BIV Tat can specifically recruit cyclin T1 to the BIV TAR element, and this recruitment is as essential for BIV Tat function as it is for HIV-1 Tat activity. However, because the cyclin T1 protein does not contribute to TAR binding, BIV Tat is able to function effectively in cells from several species that do not support HIV-1 Tat function. Thus, BIV Tat, while apparently dependent on the same cellular cofactor as the Tat proteins encoded by other lentiviruses, is nevertheless unique in terms of the mechanism used to recruit the BIV Tat-cyclin T1 complex to the viral LTR promoter.


2019 ◽  
Vol 47 (21) ◽  
pp. 11057-11068 ◽  
Author(s):  
Emanuela Ruggiero ◽  
Sara Lago ◽  
Primož Šket ◽  
Matteo Nadai ◽  
Ilaria Frasson ◽  
...  

Abstract I-motifs are non-canonical nucleic acids structures characterized by intercalated H-bonds between hemi-protonated cytosines. Evidence on the involvement of i-motif structures in the regulation of cellular processes in human cells has been consistently growing in the recent years. However, i-motifs within non-human genomes have never been investigated. Here, we report the characterization of i-motifs within the long terminal repeat (LTR) promoter of the HIV-1 proviral genome. Biophysical and biochemical analysis revealed formation of a predominant i-motif with an unprecedented loop composition. One-dimensional nuclear magnetic resonance investigation demonstrated formation of three G-C H-bonds in the long loop, which likely improve the structure overall stability. Pull-down experiments combined with mass spectrometry and protein crosslinking analysis showed that the LTR i-motif is recognized by the cellular protein hnRNP K, which induced folding at physiological conditions. In addition, hnRNP K silencing resulted in an increased LTR promoter activity, confirming the ability of the protein to stabilize the i-motif-forming sequence, which in turn regulates the LTR-mediated HIV-1 transcription. These findings provide new insights into the complexity of the HIV-1 virus and lay the basis for innovative antiviral drug design, based on the possibility to selectively recognize and target the HIV-1 LTR i-motif.


2018 ◽  
Vol 92 (15) ◽  
Author(s):  
Jenna M. Antonucci ◽  
Sun Hee Kim ◽  
Corine St. Gelais ◽  
Serena Bonifati ◽  
Tai-Wei Li ◽  
...  

ABSTRACT Sterile alpha motif and HD domain-containing protein 1 (SAMHD1) restricts human immunodeficiency virus type 1 (HIV-1) replication in nondividing cells by degrading intracellular deoxynucleoside triphosphates (dNTPs). SAMHD1 is highly expressed in resting CD4+ T cells, which are important for the HIV-1 reservoir and viral latency; however, whether SAMHD1 affects HIV-1 latency is unknown. Recombinant SAMHD1 binds HIV-1 DNA or RNA fragments in vitro, but the function of this binding remains unclear. Here we investigate the effect of SAMHD1 on HIV-1 gene expression and reactivation of viral latency. We found that endogenous SAMHD1 impaired HIV-1 long terminal repeat (LTR) activity in monocytic THP-1 cells and HIV-1 reactivation in latently infected primary CD4+ T cells. Overexpression of wild-type (WT) SAMHD1 suppressed HIV-1 LTR-driven gene expression at a transcriptional level. Tat coexpression abrogated SAMHD1-mediated suppression of HIV-1 LTR-driven luciferase expression. SAMHD1 overexpression also suppressed the LTR activity of human T-cell leukemia virus type 1 (HTLV-1), but not that of murine leukemia virus (MLV), suggesting specific suppression of retroviral LTR-driven gene expression. WT SAMHD1 bound to proviral DNA and impaired reactivation of HIV-1 gene expression in latently infected J-Lat cells. In contrast, a nonphosphorylated mutant (T592A) and a dNTP triphosphohydrolase (dNTPase) inactive mutant (H206D R207N [HD/RN]) of SAMHD1 failed to efficiently suppress HIV-1 LTR-driven gene expression and reactivation of latent virus. Purified recombinant WT SAMHD1, but not the T592A and HD/RN mutants, bound to fragments of the HIV-1 LTR in vitro. These findings suggest that SAMHD1-mediated suppression of HIV-1 LTR-driven gene expression potentially regulates viral latency in CD4+ T cells. IMPORTANCE A critical barrier to developing a cure for HIV-1 infection is the long-lived viral reservoir that exists in resting CD4+ T cells, the main targets of HIV-1. The viral reservoir is maintained through a variety of mechanisms, including regulation of the HIV-1 LTR promoter. The host protein SAMHD1 restricts HIV-1 replication in nondividing cells, but its role in HIV-1 latency remains unknown. Here we report a new function of SAMHD1 in regulating HIV-1 latency. We found that SAMHD1 suppressed HIV-1 LTR promoter-driven gene expression and reactivation of viral latency in cell lines and primary CD4+ T cells. Furthermore, SAMHD1 bound to the HIV-1 LTR in vitro and in a latently infected CD4+ T-cell line, suggesting that the binding may negatively modulate reactivation of HIV-1 latency. Our findings indicate a novel role for SAMHD1 in regulating HIV-1 latency, which enhances our understanding of the mechanisms regulating proviral gene expression in CD4+ T cells.


PLoS ONE ◽  
2013 ◽  
Vol 8 (8) ◽  
pp. e69623 ◽  
Author(s):  
Rakhee Sachdeva ◽  
Nune Darbinian ◽  
Kamel Khalili ◽  
Shohreh Amini ◽  
Daniel Gonzalez ◽  
...  
Keyword(s):  

2016 ◽  
Vol 7 ◽  
Author(s):  
María Rosa López-Huertas ◽  
Jasmine Li ◽  
Anjum Zafar ◽  
Sara Rodríguez-Mora ◽  
Carlota García-Domínguez ◽  
...  

2009 ◽  
Vol 83 (8) ◽  
pp. 3704-3718 ◽  
Author(s):  
Ramona Jochmann ◽  
Mathias Thurau ◽  
Susan Jung ◽  
Christian Hofmann ◽  
Elisabeth Naschberger ◽  
...  

ABSTRACT Human immunodeficiency virus type 1 (HIV-1) gene expression and replication are regulated by the promoter/enhancer located in the U3 region of the proviral 5′ long terminal repeat (LTR). The binding of cellular transcription factors to specific regulatory sites in the 5′ LTR is a key event in the replication cycle of HIV-1. Since transcriptional activity is regulated by the posttranslational modification of transcription factors with the monosaccharide O-linked N-acetyl-d-glucosamine (O-GlcNAc), we evaluated whether increased O-GlcNAcylation affects HIV-1 transcription. In the present study we demonstrate that treatment of HIV-1-infected lymphocytes with the O-GlcNAcylation-enhancing agent glucosamine (GlcN) repressed viral transcription in a dose-dependent manner. Overexpression of O-GlcNAc transferase (OGT), the sole known enzyme catalyzing the addition of O-GlcNAc to proteins, specifically inhibited the activity of the HIV-1 LTR promoter in different T-cell lines and in primary CD4+ T lymphocytes. Inhibition of HIV-1 LTR activity in infected T cells was most efficient (>95%) when OGT was recombinantly overexpressed prior to infection. O-GlcNAcylation of the transcription factor Sp1 and the presence of Sp1-binding sites in the LTR were found to be crucial for this inhibitory effect. From this study, we conclude that O-GlcNAcylation of Sp1 inhibits the activity of the HIV-1 LTR promoter. Modulation of Sp1 O-GlcNAcylation may play a role in the regulation of HIV-1 latency and activation and links viral replication to the glucose metabolism of the host cell. Hence, the establishment of a metabolic treatment might supplement the repertoire of antiretroviral therapies against AIDS.


Sign in / Sign up

Export Citation Format

Share Document