scholarly journals Improved non-destructive 2D and 3D X-ray imaging of leaf venation

Plant Methods ◽  
2018 ◽  
Vol 14 (1) ◽  
Author(s):  
Julio V. Schneider ◽  
Renate Rabenstein ◽  
Jens Wesenberg ◽  
Karsten Wesche ◽  
Georg Zizka ◽  
...  
Author(s):  
S.H. Lau ◽  
Sheraz Gul ◽  
Guibin Zan ◽  
David Vine ◽  
Sylvia Lewis ◽  
...  

Abstract Currently gaps in non-destructive 2D and 3D imaging in PFA for advanced packages and MEMS exist due to lack of resolution to resolve sub-micron defects and the lack of contrast to image defects within the low Z materials. These low Z defects in advanced packages include sidewall delamination between Si die and underfill, bulk cracks in the underfill, in organic substrates, Redistribution Layer, RDL; Si die cracks; voids within the underfill and in the epoxy. Similarly, failure modes in MEMS are often within low Z materials, such as Si and polymers. Many of these are a result of mechanical shock resulting in cracks in structures, packaging fractures, die adhesion issues or particles movements into critical locations. Most of these categories of defects cannot be detected non-destructively by existing techniques such as C-SAM or microCT (micro x-ray computed tomography) and XRM (X-ray microscope). We describe a novel lab-based X-ray Phase contrast and Dark-field/Scattering Contrast system with the potential to resolve these types of defects. This novel X-ray microscopy has spatial resolution of 0.5 um in absorption contrast and with the added capability of Talbot interferometry to resolve failure issues which are related to defects within organic and low Z components.


2020 ◽  
Vol 14 ◽  
Author(s):  
Hung Tri Tran ◽  
Esther H. R. Tsai ◽  
Amanda J. Lewis ◽  
Tim Moors ◽  
J. G. J. M. Bol ◽  
...  

Gaining insight to pathologically relevant processes in continuous volumes of unstained brain tissue is important for a better understanding of neurological diseases. Many pathological processes in neurodegenerative disorders affect myelinated axons, which are a critical part of the neuronal circuitry. Cryo ptychographic X-ray computed tomography in the multi-keV energy range is an emerging technology providing phase contrast at high sensitivity, allowing label-free and non-destructive three dimensional imaging of large continuous volumes of tissue, currently spanning up to 400,000 μm3. This aspect makes the technique especially attractive for imaging complex biological material, especially neuronal tissues, in combination with downstream optical or electron microscopy techniques. A further advantage is that dehydration, additional contrast staining, and destructive sectioning/milling are not required for imaging. We have developed a pipeline for cryo ptychographic X-ray tomography of relatively large, hydrated and unstained biological tissue volumes beyond what is typical for the X-ray imaging, using human brain tissue and combining the technique with complementary methods. We present four imaged volumes of a Parkinson’s diseased human brain and five volumes from a non-diseased control human brain using cryo ptychographic X-ray tomography. In both cases, we distinguish neuromelanin-containing neurons, lipid and melanic pigment, blood vessels and red blood cells, and nuclei of other brain cells. In the diseased sample, we observed several swellings containing dense granular material resembling clustered vesicles between the myelin sheaths arising from the cytoplasm of the parent oligodendrocyte, rather than the axoplasm. We further investigated the pathological relevance of such swollen axons in adjacent tissue sections by immunofluorescence microscopy for phosphorylated alpha-synuclein combined with multispectral imaging. Since cryo ptychographic X-ray tomography is non-destructive, the large dataset volumes were used to guide further investigation of such swollen axons by correlative electron microscopy and immunogold labeling post X-ray imaging, a possibility demonstrated for the first time. Interestingly, we find that protein antigenicity and ultrastructure of the tissue are preserved after the X-ray measurement. As many pathological processes in neurodegeneration affect myelinated axons, our work sets an unprecedented foundation for studies addressing axonal integrity and disease-related changes in unstained brain tissues.


2018 ◽  
Vol 2018 (1) ◽  
pp. 000409-000414
Author(s):  
David Bernard

Abstract As advanced packaging continues to develop to support novel and emerging technologies, the need for, ideally non-destructive, test and inspection continues to be vital to ensure the quality and assurance of functionality, wherever the package may go. This is made ever more difficult as the package complexity increases, whilst the feature sizes within continue to decrease. X-ray technology has long been an important part of the non-destructive inspection protocol over the history of advanced packaging and will continue to need to play a more important part in the future. This paper will review the advances made in both 2D and 3D X-ray inspection over recent years and the new opportunities that are now starting to be available, especially in 3D, or CT, inspection, that will enable this 120-year-old technology to remain relevant to and supportive of the needs of advanced packaging. To highlight the above, a case study will be presented on the faults that 2D and CT X-ray analysis can find in LEDs during their manufacture. LEDs are a good example of the remarkable developments in packaging and technology over the last 20 years, where the use of higher powers, smaller sized features and increased reliability requirements intensify the need for higher quality, more consistent production output. Flaws cannot be accepted, especially as higher usage powers mean higher operating temperatures which, in turn, then requires very good thermal conductivity in the package to move heat away from key areas. Without good heat dissipation then heat stresses at the interfaces can cause delamination or die fractures, so reducing LED lifetimes. The presence of voids, particularly at the die to package interface, creates air gaps that reduces heat transfer efficiency. As many LEDs are potted, or encapsulated, the only non-destructive test option to check for voiding and other faults is by using 2D and CT X-ray analysis.


2018 ◽  
Vol 13 (3) ◽  
pp. 270-282 ◽  
Author(s):  
Nagaraja Rao ◽  
Brian Ament ◽  
Richard Parmee ◽  
Jonathan Cameron ◽  
Martin Mayo

2013 ◽  
Vol 13 (1) ◽  
pp. 28-32 ◽  
Author(s):  
Marta Toda ◽  
Katarzyna Ewa Grabowska

Abstract This study is a short analysis of the use of computer microphotography in fiber migration testing as a modern nondestructive testing method. Microtomography operates similarly to X-ray computed tomography systems used in medicine, but with much better resolution owing to the use of a smaller radiation spot. The internal structure is reconstructed as a series of two-dimensional cross-sections that are then used to create 2D and 3D morphological objects. This process is non-destructive and does not require special preparation of a testing material.


2017 ◽  
Vol 12 (3) ◽  
pp. 578-584 ◽  
Author(s):  
Mitsuru Uesaka ◽  
◽  
Yuki Mitsuya ◽  
Eiko Hashimoto ◽  
Katsuhiro Dobashi ◽  
...  

Regular diagnosis of the structural health of infrastructure, such as bridges, is indispensable to ensure safety and reliable operation of the society. Non-destructive tests based on X-ray imaging are powerful tools to inspect the inside of a concrete structure in detail. Establishing a diagnostic method of bridges based on X-ray visualization is required to examine the internal conditions and helps in the rationalization of maintenances. We demonstrated our 950 keV X-band electron linac based X-ray source for on-site actual bridge inspection and visualized the inner structure of a bottom floor slab. For the more precise inspection of the conditions of wires and rods, we applied three-dimensional image reconstruction methods for bridge mock-up samples. Partial angle computed tomography and tomosynthesis gave cross section images of the samples with 1 mm resolution. We are planning to investigate another part of the bridge, with the 950 keV X-ray system in the near future.


2017 ◽  
Vol 44 (2) ◽  
pp. 407-416 ◽  
Author(s):  
Lynda C. Ikejimba ◽  
Christian G. Graff ◽  
Shani Rosenthal ◽  
Andreu Badal ◽  
Bahaa Ghammraoui ◽  
...  
Keyword(s):  
X Ray ◽  

Sign in / Sign up

Export Citation Format

Share Document