scholarly journals Prediction of plant-level tomato biomass and yield using machine learning with unmanned aerial vehicle imagery

Plant Methods ◽  
2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Kenichi Tatsumi ◽  
Noa Igarashi ◽  
Xiao Mengxue

Abstract Background The objective of this study is twofold. First, ascertain the important variables that predict tomato yields from plant height (PH) and vegetation index (VI) maps. The maps were derived from images taken by unmanned aerial vehicles (UAVs). Second, examine the accuracy of predictions of tomato fresh shoot masses (SM), fruit weights (FW), and the number of fruits (FN) from multiple machine learning algorithms using selected variable sets. To realize our objective, ultra-high-resolution RGB and multispectral images were collected by a UAV on ten days in 2020’s tomato growing season. From these images, 756 total variables, including first- (e.g., average, standard deviation, skewness, range, and maximum) and second-order (e.g., gray-level co-occurrence matrix features and growth rates of PH and VIs) statistics for each plant, were extracted. Several selection algorithms (i.e., Boruta, DALEX, genetic algorithm, least absolute shrinkage and selection operator, and recursive feature elimination) were used to select the variable sets useful for predicting SM, FW, and FN. Random forests, ridge regressions, and support vector machines were used to predict the yield using the top five selected variable sets. Results First-order statistics of PH and VIs collected during the early to mid-fruit formation periods, about one month prior to harvest, were important variables for predicting SM. Similar to the case for SM, variables collected approximately one month prior to harvest were important for predicting FW and FN. Furthermore, variables related to PH were unimportant for prediction. Compared with predictions obtained using only first-order statistics, those obtained using the second-order statistics of VIs were more accurate for FW and FN. The prediction accuracy of SM, FW, and FN by models constructed from all variables (rRMSE = 8.8–28.1%) was better than that from first-order statistics (rRMSE = 10.0–50.1%). Conclusions In addition to basic statistics (e.g., average and standard deviation), we derived second-order statistics of PH and VIs at the plant level using the ultra-high resolution UAV images. Our findings indicated that our variable selection method reduced the number variables needed for tomato yield prediction, improving the efficiency of phenotypic data collection and assisting with the selection of high-yield lines within breeding programs.

2021 ◽  
Author(s):  
Kenichi Tatsumi ◽  
Noa Igarashi ◽  
Xiao Mengxue

Abstract Background The objective of this study is twofold. First, ascertain the important variables that predict tomato yields from plant height (PH) and vegetation index (VI) maps. The maps were derived from images taken by unmanned aerial vehicles (UAVs). Second, examine the accuracy of predictions of tomato fresh shoot masses (SM), fruit weights (FW), and the number of fruits (FN) from multiple machine learning algorithms using selected variable sets. To realize our objective, ultra-high-resolution RGB and multispectral images were collected by a UAV on ten days in 2020’s tomato growing season. From these images, 756 total variables, including first- (e.g., average, standard deviation, skewness, range, and maximum) and second-order (e.g., gray-level co-occurrence matrix features and growth rates of PH and VIs) statistics for each plant, were extracted. Several selection algorithms (i.e., Boruta, DALEX, genetic algorithm, least absolute shrinkage and selection operator, and recursive feature elimination) were used to select the variable sets useful for predicting SM, FW, and FN. Random forests, ridge regressions, and support vector machines were used to predict the yield using the top five selected variable sets. Results First-order statistics of PH and VIs collected during the early to mid-fruit formation periods, about one month prior to harvest, were important variables for predicting SM. Similar to the case for SM, variables collected approximately one month prior to harvest were important for predicting FW and FN. Furthermore, variables related to PH were unimportant for prediction. Compared with predictions obtained using only first-order statistics, those obtained using the second-order statistics of VIs were more accurate for FW and FN. Conclusions In addition to basic statistics (e.g., average and standard deviation), we derived second-order statistics of PH and VIs at the plant level using the ultra-high resolution UAV images. Our findings indicated that our variable selection method reduced the number variables needed for tomato yield prediction, improving the efficiency of phenotypic data collection and assisting with the selection of high-yield lines within breeding programs.


2020 ◽  
Vol 12 (7) ◽  
pp. 1218
Author(s):  
Laura Tuşa ◽  
Mahdi Khodadadzadeh ◽  
Cecilia Contreras ◽  
Kasra Rafiezadeh Shahi ◽  
Margret Fuchs ◽  
...  

Due to the extensive drilling performed every year in exploration campaigns for the discovery and evaluation of ore deposits, drill-core mapping is becoming an essential step. While valuable mineralogical information is extracted during core logging by on-site geologists, the process is time consuming and dependent on the observer and individual background. Hyperspectral short-wave infrared (SWIR) data is used in the mining industry as a tool to complement traditional logging techniques and to provide a rapid and non-invasive analytical method for mineralogical characterization. Additionally, Scanning Electron Microscopy-based image analyses using a Mineral Liberation Analyser (SEM-MLA) provide exhaustive high-resolution mineralogical maps, but can only be performed on small areas of the drill-cores. We propose to use machine learning algorithms to combine the two data types and upscale the quantitative SEM-MLA mineralogical data to drill-core scale. This way, quasi-quantitative maps over entire drill-core samples are obtained. Our upscaling approach increases result transparency and reproducibility by employing physical-based data acquisition (hyperspectral imaging) combined with mathematical models (machine learning). The procedure is tested on 5 drill-core samples with varying training data using random forests, support vector machines and neural network regression models. The obtained mineral abundance maps are further used for the extraction of mineralogical parameters such as mineral association.


2010 ◽  
Vol 2010 ◽  
pp. 1-6
Author(s):  
Haiping Jiang ◽  
Salah Bourennane ◽  
Caroline Fossati

Multiple line characterization is a most common issue in image processing. A specific formalism turns the contour detection issue of image processing into a source localization issue of array processing. However, the existing methods do not address correlated noise. As a result, the detection performance is degraded. In this paper, we propose to improve the subspace-based high-resolution methods by computing the fourth-order slice cumulant matrix of the received signals instead of second-order statistics, and we estimate contour parameters out of images impaired with correlated Gaussian noise. Simulation results are presented and show that the proposed methods improve line characterization performance compared to second-order statistics.


2008 ◽  
Vol 08 (02) ◽  
pp. L107-L123 ◽  
Author(s):  
FRANÇOIS CHAPEAU-BLONDEAU ◽  
DENIS GINDRE ◽  
RÉGIS BARILLÉ ◽  
DAVID ROUSSEAU

We analyze a simple model of a scalar optical wave with partial coherence. The model is devised to describe the influence on the coherence of the wave, of the statistical properties of its random phase, including both the second-order statistics (phase correlation) — which is classic, but also the first-order statistics (phase distribution) — which is nonclassic. Expectedly, upon increasing the disorder of the fluctuating phase through a reduction of its correlation duration, the model shows that the coherence of the wave is always reduced. By contrast, upon increasing the disorder of the fluctuating phase through an increase of its dispersion, the model reveals that the coherence of the wave can sometimes be enhanced. This beneficial consequence of an increase in disorder is related to the phenomenon of stochastic resonance or improvement by noise in signal processing.


2020 ◽  
Vol 12 (11) ◽  
pp. 1838 ◽  
Author(s):  
Zhao Zhang ◽  
Paulo Flores ◽  
C. Igathinathane ◽  
Dayakar L. Naik ◽  
Ravi Kiran ◽  
...  

The current mainstream approach of using manual measurements and visual inspections for crop lodging detection is inefficient, time-consuming, and subjective. An innovative method for wheat lodging detection that can overcome or alleviate these shortcomings would be welcomed. This study proposed a systematic approach for wheat lodging detection in research plots (372 experimental plots), which consisted of using unmanned aerial systems (UAS) for aerial imagery acquisition, manual field evaluation, and machine learning algorithms to detect the occurrence or not of lodging. UAS imagery was collected on three different dates (23 and 30 July 2019, and 8 August 2019) after lodging occurred. Traditional machine learning and deep learning were evaluated and compared in this study in terms of classification accuracy and standard deviation. For traditional machine learning, five types of features (i.e. gray level co-occurrence matrix, local binary pattern, Gabor, intensity, and Hu-moment) were extracted and fed into three traditional machine learning algorithms (i.e., random forest (RF), neural network, and support vector machine) for detecting lodged plots. For the datasets on each imagery collection date, the accuracies of the three algorithms were not significantly different from each other. For any of the three algorithms, accuracies on the first and last date datasets had the lowest and highest values, respectively. Incorporating standard deviation as a measurement of performance robustness, RF was determined as the most satisfactory. Regarding deep learning, three different convolutional neural networks (simple convolutional neural network, VGG-16, and GoogLeNet) were tested. For any of the single date datasets, GoogLeNet consistently had superior performance over the other two methods. Further comparisons between RF and GoogLeNet demonstrated that the detection accuracies of the two methods were not significantly different from each other (p > 0.05); hence, the choice of any of the two would not affect the final detection accuracies. However, considering the fact that the average accuracy of GoogLeNet (93%) was larger than RF (91%), it was recommended to use GoogLeNet for wheat lodging detection. This research demonstrated that UAS RGB imagery, coupled with the GoogLeNet machine learning algorithm, can be a novel, reliable, objective, simple, low-cost, and effective (accuracy > 90%) tool for wheat lodging detection.


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Hong Zeng ◽  
Junjie Shen ◽  
Wenming Zheng ◽  
Aiguo Song ◽  
Jia Liu

The topdown determined visual object perception refers to the ability of a person to identify a prespecified visual target. This paper studies the technical foundation for measuring the target-perceptual ability in a guided visual search task, using the EEG-based brain imaging technique. Specifically, it focuses on the feature representation learning problem for single-trial classification of fixation-related potentials (FRPs). The existing methods either capture only first-order statistics while ignoring second-order statistics in data, or directly extract second-order statistics with covariance matrices estimated with raw FRPs that suffer from low signal-to-noise ratio. In this paper, we propose a new representation learning pipeline involving a low-level convolution subnetwork followed by a high-level Riemannian manifold subnetwork, with a novel midlevel pooling layer bridging them. In this way, the discriminative power of the first-order features can be increased by the convolution subnetwork, while the second-order information in the convolutional features could further be deeply learned with the subsequent Riemannian subnetwork. In particular, the temporal ordering of FRPs is well preserved for the components in our pipeline, which is considered to be a valuable source of discriminant information. The experimental results show that proposed approach leads to improved classification performance and robustness to lack of data over the state-of-the-art ones, thus making it appealing for practical applications in measuring the target-perceptual ability of cognitively impaired patients with the FRP technique.


2018 ◽  
Vol 2 (1) ◽  
pp. 31-46
Author(s):  
Soumya K. Das ◽  
Prakash P. S. ◽  
Bharath Aithal

Building extraction has been a challenging task due to complex structures and features of various land use with matching spectral and spatial attributes in a satellite data. We attempted to extract building as features using machine-learning algorithms such as Support Vector Machine (SVM), Random Forests (RF), Artificial Neural Network (ANN) and Improved Ensemble Technique as Gradient Boosting. The techniques used increases their classification accuracies using spectral properties as well as indices such as Normalized Difference Vegetation Index (NDVI) as attributes. Extracted results through various methods, performance of three different machine learning such as Ensemble method, RF and SVM are applied and results are analyzed for their behavior in different building distribution. Different algorithms showed variations in accuracies and performance in different built-up conditions. Ensemble algorithm performed very well in all conditions followed by RF and SVM performed better in coarse resolution, while ANN performed better in high resolution and overall accuracies of all algorithms increased with better spatial resolution. Ensemble algorithm showed relatively efficient performance in regions with extensive heterogeneous features. These analyses can helpful to provide quantitative data for various stocktaking analysis and city managers for better administration capabilities.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Amos E. Gera

A new procedure for determining the acceptance or rejection of a system that undergoes a start-up demonstration set of tests is presented. It is a generalization of the recently introduced CSDF model (consecutive successes distant failures). According to the new total successes consecutive successes total failures distant failures (TSCSTFDF) procedure, a unit is accepted when either a total number of successful tests or a specified number of consecutive successes are observed before a total number of failures or the occurrence of near failures which are too close to each other. The practical advantage of this new procedure is the significant reduction in the expected number of required tests together with improved second-order statistics (standard deviation).


Sign in / Sign up

Export Citation Format

Share Document