scholarly journals Impacts of pine plantations on carbon stocks of páramo sites in southern Ecuador

2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Carlos Quiroz Dahik ◽  
Patricio Crespo ◽  
Bernd Stimm ◽  
Reinhard Mosandl ◽  
Jorge Cueva ◽  
...  

Abstract Background Since the 1990’s, afforestation programs in the páramo have been implemented to offset carbon emissions through carbon sequestration, mainly using pine plantations. However, several studies have indicated that after the establishment of pine plantations in grasslands, there is an alteration of carbon pools including a decrease of the soil organic carbon (SOC) pool. The aim of this study is to investigate the impact of the establishment of pine plantations on the carbon stocks in different altitudes of the páramo ecosystem of South Ecuador. Results At seven locations within an elevational gradient from 2780 to 3760 m a.s.l., we measured and compared carbon stocks of three types of land use: natural grassland, grazed páramo, and Pinus patula Schlltdl. & Cham. plantation sites. For a more accurate estimation of pine tree carbon, we developed our own allometric equations. There were significant (p < 0.05) differences between the amounts of carbon stored in the carbon pools aboveground and belowground for the three types of land use. In most of the locations, pine plantations revealed the highest amounts of aboveground and belowground carbon (55.4 and 6.9 tC/ha) followed by natural grassland (23.1 and 2.7 tC/ha) and grazed páramo sites (9.1 and 1.5 tC/ha). Concerning the SOC pools, most of the locations revealed significant lower values of plantations’ SOC in comparison to natural grassland and grazed páramo sites. Higher elevation was associated with lower amounts of pines’ biomass. Conclusions Even though plantations store high amounts of carbon, natural páramo grassland can also store substantial amounts above and belowground, without negatively affecting the soils and putting other páramo ecosystem services at risk. Consequently, plans for afforestation in the páramo should be assessed case by case, considering not only the limiting factor of elevation, but also the site quality especially affected by the type of previous land use.

2020 ◽  
Vol 12 (18) ◽  
pp. 7786 ◽  
Author(s):  
Paul Eguiguren ◽  
Tatiana Ojeda Luna ◽  
Bolier Torres ◽  
Melvin Lippe ◽  
Sven Günter

The balance between the supply of multiple ecosystem services (ES) and the fulfillment of society demands is a challenge, especially in the tropics where different land use transition phases emerge. These phases are characterized by either a decline (from intact old-growth to logged forests) or a recovery of ES (successional forests, plantations, and agroforestry systems). This highlights the importance of ecosystem service multifunctionality (M) assessments across these land use transition phases as a basis for forest management and conservation. We analyzed synergies and trade-offs of ES to identify potential umbrella ES. We also evaluated the impact of logging activities in the decline of ES and M, and the influence of three recovery phases in the supply of ES and M. We installed 156 inventory plots (1600 m2) in the Ecuadorian Central Amazon and the Chocó. We estimated indicators for provisioning, regulating, supporting services and biodiversity. M indicator was estimated using the multifunctional average approach. Our results show that above-ground carbon stocks can be considered as an umbrella service as it presented high synergetic relations with M and various ES. We observed that logging activities caused a decline of 16–18% on M, with high impacts for timber volume and above-ground carbon stocks, calling for more sustainable practices with stricter post-harvesting control to avoid a higher depletion of ES and M. From the recovery phases it is evident that, successional forests offer the highest level of M, evidencing high potential to recover multiple ES after human disturbance.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Arbindra Timilsina ◽  
Wenxu Dong ◽  
Jiafa Luo ◽  
Stuart Lindsey ◽  
Yuying Wang ◽  
...  

AbstractThe conversion of natural grassland to semi-natural or artificial ecosystems is a large-scale land-use change (LUC) commonly occurring to saline–alkaline land. Conversion of natural to artificial ecosystems, with addition of anthropogenic nitrogen (N) fertilizer, influences N availability in the soil that may result in higher N2O emission along with depletion of 15N, while converting from natural to semi-natural the influence may be small. So, this study assesses the impact of LUC on N2O emission and 15N in N2O emitted from naturally occurring saline–alkaline soil when changing from natural grassland (Phragmites australis) to semi-natural [Tamarix chinensis (Tamarix)] and to cropland (Gossypium spp.). The grassland and Tamarix ecosystems were not subject to any management practice, while the cropland received fertilizer and irrigation. Overall, median N2O flux was significantly different among the ecosystems with the highest from the cropland (25.3 N2O-N µg m−2 h−1), intermediate (8.2 N2O-N µg m−2 h−1) from the Tamarix and the lowest (4.0 N2O-N µg m−2 h−1) from the grassland ecosystem. The 15N isotopic signatures in N2O emitted from the soil were also significantly affected by the LUC with more depleted from cropland (− 25.3 ‰) and less depleted from grassland (− 0.18 ‰). Our results suggested that the conversion of native saline–alkaline grassland with low N to Tamarix or cropland is likely to result in increased soil N2O emission and also contributes significantly to the depletion of the 15N in atmospheric N2O, and the contribution of anthropogenic N addition was found more significant than any other processes.


2018 ◽  
Vol 16 (3) ◽  
Author(s):  
Siti Nur Zakiah ◽  
Nur Wakhid ◽  
Dedi Nursyamsi

The carbon stored in peatlands is huge not only from soil but also from vegetation. Carbon stocks can decrease when there are human activities such as land use changes. Measuring and monitoring carbon stocks are necessary as the basis for assessment of the impact of land management technology applications to conservation and carbon emissions associated with sustainable management system of peatland. The purpose of this study was to determine the stratification of above ground C-stock in tidal peatland and fresh water swampland. Above ground C-stock stratification based on the types of vegetation. The stratification was conducted to distinguish vegetation conditions based on the volume of biomass and carbon content in an observation plot. The measurement of above ground C-stock was carried out by destructive and non destructive refers to Hairiah K and Rahayu (2007), after that the estimation of carbon stockswas conducted on tidal peatland (land use rubber + pineapple, rubber folk and shrubs) and peat in fresh water swampland (land use rubber 4-5 years and 2-3 years). The results showed that the types of vegetation, plant density and management affect of carbon stocks. Carbon stocks in tree vegetation are higher than shrubs. The high of plant density affects the sunlight used for photosynthesis, through photosynthesis, CO2 is absorbed and converted by plants into organic carbon in the form of biomass. Arrangement and maintenance of the plant affects the storage of carbon in a land use.


2021 ◽  
Vol 14 (6) ◽  
pp. 3789-3812
Author(s):  
Jaber Rahimi ◽  
Expedit Evariste Ago ◽  
Augustine Ayantunde ◽  
Sina Berger ◽  
Jan Bogaert ◽  
...  

Abstract. West African Sahelian and Sudanian ecosystems provide essential services to people and also play a significant role within the global carbon cycle. However, climate and land use are dynamically changing, and uncertainty remains with respect to how these changes will affect the potential of these regions to provide food and fodder resources or how they will affect the biosphere–atmosphere exchange of CO2. In this study, we investigate the capacity of a process-based biogeochemical model, LandscapeDNDC, to simulate net ecosystem exchange (NEE) and aboveground biomass of typical managed and natural Sahelian and Sudanian savanna ecosystems. In order to improve the simulation of phenology, we introduced soil-water availability as a common driver of foliage development and productivity for all of these systems. The new approach was tested by using a sample of sites (calibration sites) that provided NEE from flux tower observations as well as leaf area index data from satellite images (MODIS, MODerate resolution Imaging Spectroradiometer). For assessing the simulation accuracy, we applied the calibrated model to 42 additional sites (validation sites) across West Africa for which measured aboveground biomass data were available. The model showed good performance regarding biomass of crops, grass, or trees, yielding correlation coefficients of 0.82, 0.94, and 0.77 and root-mean-square errors of 0.15, 0.22, and 0.12 kg m−2, respectively. The simulations indicate aboveground carbon stocks of up to 0.17, 0.33, and 0.54 kg C ha−1 m−2 for agricultural, savanna grasslands, and savanna mixed tree–grassland sites, respectively. Carbon stocks and exchange rates were particularly correlated with the abundance of trees, and grass biomass and crop yields were higher under more humid climatic conditions. Our study shows the capability of LandscapeDNDC to accurately simulate carbon balances in natural and agricultural ecosystems in semiarid West Africa under a wide range of conditions; thus, the model could be used to assess the impact of land-use and climate change on the regional biomass productivity.


2021 ◽  
Vol 54 (11) ◽  
pp. 1756-1769
Author(s):  
I. A. Dubrovina ◽  
E. V. Moshkina ◽  
V. A. Sidorova ◽  
A. V. Tuyunen ◽  
A. Yu. Karpechko ◽  
...  

2020 ◽  
Author(s):  
Arpita Verma ◽  
Ingrid Jacquemin ◽  
Louis Francois ◽  
Nicolas Dendoncker ◽  
Veronique Beckers ◽  
...  

&lt;p&gt;Changes in land use/land cover (LU/LC) practices are critical to determine and this is one of the crucial driving forces of terrestrial ecosystem productivity and carbon sink variability. However, relatively few studies have quantified the impact of LU/LC change on the terrestrial carbon cycle. In the present study, we developed a workflow for quantifying and assessing changes in terrestrial carbon stocks due to land use change using a dynamic vegetation model. The main objectives are to assess status and variation in carbon stocks across land covers, towards the quantification of spatial distribution and dynamic variation of terrestrial carbon sinks in response to LU/LC change. Here, with the CARAIB dynamic vegetation model, we perform simulations using several sets of LU/LC data to analyse the sensitivity of the carbon sink. We propose a new method of using satellite &amp;#8211; and machine learning-based observation to reconstruct historical LU/LC change and compare it with static data from the cadastral map and dynamic data from an agent-based model coupled with CARAIB. It will quantify the spatial and temporal variability of land use during the 2000-2019 period over Belgium at high resolution. This study will give the space to analyse past information and hence calibrate the dynamic vegetation model to minimize uncertainty in the future projection (until 2035). Overall, this study allows us to understand the effect of changing land use pattern and identify the input dataset which minimizes the uncertainty in model estimation.&lt;/p&gt;


2021 ◽  
Author(s):  
Syrus Cesar Decena ◽  
Sarah Villacorta-Parilla ◽  
Arwin Arribado ◽  
Dionesio Macasait ◽  
Michael Arguelles ◽  
...  

Abstract Peatlands are unique wetland ecosystems that provide various ecosystem services such as carbon storage and biogeochemical cycling, however being threatened by anthropogenic activities. The present study was conducted to explore the impact of land use conversion on carbon stocks and peat properties in a tropical peatland in the Leyte Sab-a Basin Peatland (LSBP) in Northeastern Leyte, Philippines. The carbon stocks (aboveground and belowground) and physico-chemical properties of peat soil were compared among wetland forest, grassland and cropland. Land use conversion resulted in the significant reduction of the total aboveground carbon stock. The wetland forest had the highest carbon stocks (38.56 ± 4.58 t ha− 1), and when converted to grassland and cropland, it has resulted to carbon loss of as much as 86.59 and 90.45%, respectively. The belowground root carbon stock was highest in the wetland forest (5.05 ± 0.64 t ha− 1) also while highest peat carbon stock (1 m depth) was observed in the cropland areas (45.28 ± 2.25–61.27 ± 3.07 t ha− 1). However, wetland forests with very deep peat deposits potentially store a significant amount of carbon than in cropland that was characterized by shallower compressed peats. In addition, land use conversion altered the physico-chemical properties of peat such as water content, organic matter, and porosity, and bulk density which all indicated peatland degradation. Finally, the overall result of this study highlights the importance to develop and implement management and conservation plans for LSBP.


2021 ◽  
Vol 9 ◽  
Author(s):  
Sandra V. Uribe ◽  
Nicolás García ◽  
Cristián F. Estades

The growing replacement of native vegetation by forest plantations is considered a global threat to biodiversity. Significant variation in biotic communities among stands with similar management suggests that previous land use might have an effect on the capacity of forest plantations to harbor native species. The goal of our study was to determine the effect of land-use history on the biodiversity currently present in pine plantations in the coastal range of Central Chile. In particular, we hypothesized that plantations that directly replaced native forests should have higher diversity of plants and birds than plantations that were established in agricultural areas. We also expected that plantations of higher number of rotations should have fewer habitat-specialists and more generalists/exotics, reflecting a process of biotic homogenization. Using aerial photographs and satellite images encompassing a period of six decades, we classified 108 4-ha sampling units into native forests, and mature (17–20 year) pine plantations of first, second, and third rotation, of either forest or agricultural origin. At each site, we collected data on the abundance and richness of diurnal birds and understory plants, and analyzed their behavior in relation to the land-use history using Generalized Linear Models (GLMs). Also, we evaluated dissimilarity of communities of each pine plantation “treatment” to assess the occurrence of biotic homogenization. As predicted, pine plantations that directly replaced native forests had a higher abundance of forest specialists and less abundance of exotics and generalists than plantations of agricultural origin. In contrast, the number of rotations of pine plantations not only did not affect negatively the diversity and abundance of forest specialist species, but the models showed some signs of naturalization in the studied systems over time, such as the increase in the abundance of native herbs and a reduction in the abundance of their exotic counterparts. These results agree with the lack of evidence for a decrease in the dissimilarity of biotic communities in plantations with time, suggesting that the management of pine plantations in Central Chile is not promoting biotic homogenization, beyond the impact of the initial stages of land use change.


Sign in / Sign up

Export Citation Format

Share Document