The Impact of Land Use on Soil Properties and Structure of Ecosystem Carbon Stocks in the Middle Taiga Subzone of Karelia

2021 ◽  
Vol 54 (11) ◽  
pp. 1756-1769
Author(s):  
I. A. Dubrovina ◽  
E. V. Moshkina ◽  
V. A. Sidorova ◽  
A. V. Tuyunen ◽  
A. Yu. Karpechko ◽  
...  
2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Angie Elwin ◽  
Jacob J. Bukoski ◽  
Vipak Jintana ◽  
Elizabeth J. Z. Robinson ◽  
Joanna M. Clark

AbstractMangrove forests capture and store exceptionally large amounts of carbon and are increasingly recognised as an important ecosystem for carbon sequestration. Yet land-use change in the tropics threatens this ecosystem and its critical ‘blue carbon’ (carbon stored in marine and coastal habitats) stores. The expansion of shrimp aquaculture is among the major causes of mangrove loss globally. Here, we assess the impact of mangrove to shrimp pond conversion on ecosystem carbon stocks, and carbon losses and gains over time after ponds are abandoned. Our assessment is based on an intensive field inventory of carbon stocks at a coastal setting in Thailand. We show that although up to 70% of ecosystem carbon is lost when mangroves are converted to shrimp ponds, some abandoned ponds contain deep mangrove soils (>2.5 m) and large carbon reservoirs exceeding 865 t carbon per hectare. We also found a positive recovery trajectory for carbon stocks in the upper soil layer (0–15 cm) of a chronosequence of abandoned ponds, associated with natural mangrove regeneration. Our data suggest that mangrove carbon pools can rebuild in abandoned ponds over time in areas exposed to tidal flushing.


2020 ◽  
Vol 21 (11) ◽  
Author(s):  
Trialaksita Sari Priska Ardhani ◽  
DANIEL MURDIYARSO ◽  
CECEP KUSMANA

Abstract. Authors. 2020. Effects of permeable barriers on total ecosystem carbon stocks of mangrove forests and abandoned ponds in Demak District, Central Java, Indonesia. Biodiversitas 21: 5298-5307.  In this study, we observed the effects of constructing permeable barriers in the low-lying coastal zone and severely eroded coast of Demak District, Central Java, Indonesia in the context of mangrove forest structures and carbon (C) dynamics. Forest structures were characterized by stand density, basal area, and ecological indices. The dynamics of C, expressed as total ecosystem carbon stocks (TECS), were compared in mangrove forests, abandoned ponds, and productive ponds by estimating C pools from above- and belowground biomass, dead organic matter, and soil. We found that permeable barriers, whether or not protect mangroves, results in the similarity of above- and belowground C due to no considerable difference in basal area. By contrast, soil properties in terms of bulk density, N concentration, and C:N ratio statistically varied among sites. We discovered that changes in soil properties were associated with duration of permeable barriers, resulting in an increase of soil C in mangrove sites, i.e., 618.84±30.39 Mg C ha−1; 704.13±17.73 Mg C ha−1; and 759.88±15.26 Mg C ha−1 in 0-, 1-, and 4-year-old permeable barriers, respectively. Moreover, these barriers were proved not only could enrich soil C in mangroves but also provide a habitat for Avicennia sp. seedlings in the newly reclaimed coastline.


2020 ◽  
Vol 12 (3) ◽  
pp. 528 ◽  
Author(s):  
Jingye Li ◽  
Jian Gong ◽  
Jean-Michel Guldmann ◽  
Shicheng Li ◽  
Jie Zhu

Land use/cover change (LUCC) has an important impact on the terrestrial carbon cycle. The spatial distribution of regional carbon reserves can provide the scientific basis for the management of ecosystem carbon storage and the formulation of ecological and environmental policies. This paper proposes a method combining the CA-based FLUS model and the Integrated Valuation of Ecosystem Services and Trade-offs (InVEST) model to assess the temporal and spatial changes in ecosystem carbon storage due to land-use changes over 1990–2015 in the Qinghai Lake Basin (QLB). Furthermore, future ecosystem carbon storage is simulated and evaluated over 2020–2030 under three scenarios of natural growth (NG), cropland protection (CP), and ecological protection (EP). The long-term spatial variations in carbon storage in the QLB are discussed. The results show that: (1) Carbon storage in the QLB decreased at first (1990–2000) and increased later (2000–2010), with total carbon storage increasing by 1.60 Tg C (Teragram: a unit of mass equal to 1012 g). From 2010 to 2015, carbon storage displayed a downward trend, with a sharp decrease in wetlands and croplands as the main cause; (2) Under the NG scenario, carbon reserves decrease by 0.69 Tg C over 2020–2030. These reserves increase significantly by 6.77 Tg C and 7.54 Tg C under the CP and EP scenarios, respectively, thus promoting the benign development of the regional ecological environment. This study improves our understanding on the impact of land-use change on carbon storage for the QLB in the northeastern Qinghai–Tibetan Plateau (QTP).


Author(s):  
Allison Neil

Soil properties are strongly influenced by the composition of the surrounding vegetation. We investigated soil properties of three ecosystems; a coniferous forest, a deciduous forest and an agricultural grassland, to determine the impact of land use change on soil properties. Disturbances such as deforestation followed by cultivation can severely alter soil properties, including losses of soil carbon. We collected nine 40 cm cores from three ecosystem types on the Roebuck Farm, north of Perth Village, Ontario, Canada. Dominant species in each ecosystem included hemlock and white pine in the coniferous forest; sugar maple, birch and beech in the deciduous forest; grasses, legumes and herbs in the grassland. Soil pH varied little between the three ecosystems and over depth. Soils under grassland vegetation had the highest bulk density, especially near the surface. The forest sites showed higher cation exchange capacity and soil moisture than the grassland; these differences largely resulted from higher organic matter levels in the surface forest soils. Vertical distribution of organic matter varied greatly amongst the three ecosystems. In the forest, more of the organic matter was located near the surface, while in the grassland organic matter concentrations varied little with depth. The results suggest that changes in land cover and land use alters litter inputs and nutrient cycling rates, modifying soil physical and chemical properties. Our results further suggest that conversion of forest into agricultural land in this area can lead to a decline in soil carbon storage.


2018 ◽  
Vol 28 (6) ◽  
pp. 973-985 ◽  
Author(s):  
Hengxing Xiang ◽  
Mingming Jia ◽  
Zongming Wang ◽  
Lin Li ◽  
Dehua Mao ◽  
...  

2020 ◽  
Vol 12 (18) ◽  
pp. 7786 ◽  
Author(s):  
Paul Eguiguren ◽  
Tatiana Ojeda Luna ◽  
Bolier Torres ◽  
Melvin Lippe ◽  
Sven Günter

The balance between the supply of multiple ecosystem services (ES) and the fulfillment of society demands is a challenge, especially in the tropics where different land use transition phases emerge. These phases are characterized by either a decline (from intact old-growth to logged forests) or a recovery of ES (successional forests, plantations, and agroforestry systems). This highlights the importance of ecosystem service multifunctionality (M) assessments across these land use transition phases as a basis for forest management and conservation. We analyzed synergies and trade-offs of ES to identify potential umbrella ES. We also evaluated the impact of logging activities in the decline of ES and M, and the influence of three recovery phases in the supply of ES and M. We installed 156 inventory plots (1600 m2) in the Ecuadorian Central Amazon and the Chocó. We estimated indicators for provisioning, regulating, supporting services and biodiversity. M indicator was estimated using the multifunctional average approach. Our results show that above-ground carbon stocks can be considered as an umbrella service as it presented high synergetic relations with M and various ES. We observed that logging activities caused a decline of 16–18% on M, with high impacts for timber volume and above-ground carbon stocks, calling for more sustainable practices with stricter post-harvesting control to avoid a higher depletion of ES and M. From the recovery phases it is evident that, successional forests offer the highest level of M, evidencing high potential to recover multiple ES after human disturbance.


Forests ◽  
2019 ◽  
Vol 10 (4) ◽  
pp. 342 ◽  
Author(s):  
Bin Yang ◽  
Wenhui Zhang ◽  
Yanlei Lu ◽  
Weiwei Zhang ◽  
Yanan Wang

Research Highlights: This study comprehensively revealed the carbon sequestration characteristics of secondary forests in the central Loess Plateau during vegetation succession. Background and Objectives: The secondary succession of Loess Plateau forests is of great significance in global climate change, but their carbon storage dynamics are poorly understood. The study objectives were to clarify the pattern of changes and contribution level of carbon stocks in various components of ecosystem during succession. Materials and Methods: We selected 18 plots for Pinus tabuliformis Carr. forest at the early stage of succession, 19 for pine-broadleaved mixed forest at the middle stage, and 12 for Quercus-broadleaved mixed forest at the climax stage to determine the tree, shrub, herb, fine root, litter, coarse wood debris (CWD), and soil carbon stocks. Results: Ecosystem carbon stocks increased from 160.73 to 231.14 Mg·ha−1 with the succession stages. Vegetation (including tree, shrub and herb) and soil were the two largest carbon pools, and carbon was mainly sequestrated in tree biomass and shallow soil (0–50 cm). In the early stage, soil contributed more carbon stocks to the ecosystem than vegetation, but with succession, the soil contribution decreased while vegetation contribution increased, finally reaching a balance (46.78% each) at the climax stage. Fine root, litter, and CWD contributed little (average 6.59%) to ecosystem carbon stocks and were mainly involved in the turnover of vegetation biomass to soil carbon. Conclusions: Our results provide direct evidence for carbon sequestration of secondary forests on the Loess Plateau. The dynamic results of carbon storage provide an important basis for forest restoration management under climate change.


2021 ◽  
Vol 192 ◽  
pp. 110213
Author(s):  
Clint Cameron ◽  
Bridget Kennedy ◽  
Senilolia Tuiwawa ◽  
Nick Goldwater ◽  
Katy Soapi ◽  
...  

Forests ◽  
2018 ◽  
Vol 10 (1) ◽  
pp. 17 ◽  
Author(s):  
Franklin Marín ◽  
Carlos Dahik ◽  
Giovanny Mosquera ◽  
Jan Feyen ◽  
Pedro Cisneros ◽  
...  

Andean ecosystems provide important ecosystem services including streamflow regulation and carbon sequestration, services that are controlled by the water retention properties of the soils. Even though these soils have been historically altered by pine afforestation and grazing, little research has been dedicated to the assessment of such impacts at local or regional scales. To partially fill this knowledge gap, we present an evaluation of the impacts of pine plantations and grazing on the soil hydro-physical properties and soil organic matter (SOM) of high montane forests and páramo in southern Ecuador, at elevations varying between 2705 and 3766 m a.s.l. In total, seven study sites were selected and each one was parceled into undisturbed and altered plots with pine plantation and grazing. Soil properties were characterized at two depths, 0–10 and 10–25 cm, and differences in soil parameters between undisturbed and disturbed plots were analyzed versus factors such as ecosystem type, sampling depth, soil type, elevation, and past/present land management. The main soil properties affected by land use change are the saturated hydraulic conductivity (Ksat), the water retention capacity (pF 0 to 2.52), and SOM. The impacts of pine afforestation are dependent on sampling depth, ecosystem type, plantation characteristics, and previous land use, while the impacts of grazing are primarily dependent on sampling depth and land use management (grazing intensity and tilling activities). The site-specific nature of the found relations suggests that extension of findings in response to changes in land use in montane Andean ecosystems is risky; therefore, future evaluations of the impact of land use change on soil parameters should take into consideration that responses are or can be site specific.


Sign in / Sign up

Export Citation Format

Share Document