scholarly journals Histopathological features of condylar hyperplasia and condylar Osteochondroma: a comparison study

2019 ◽  
Vol 14 (1) ◽  
Author(s):  
Jingshuang Yu ◽  
Tong Yang ◽  
Jiewen Dai ◽  
Xudong Wang

Abstract Background Both mandibular condylar hyperplasia and condylar osteochondroma can lead to maxillofacial skeletal asymmetry and malocclusion, although they exhibit different biological behavior. This study attempted to compare the histological features of mandibular condylar hyperplasia and condylar osteochondroma using hematoxylin-and-eosin (H&E) staining, and immunohistochemistry staining of PCNA and EXT1 with quantitative analysis method. Results The H&E staining showed that condylar hyperplasia and condylar osteochondroma could be divided into four histological types and exhibited features of different endochondral ossification stages. There was evidence of a thicker cartilage cap in condylar osteochondroma as compared condylar hyperplasia (P = 0.018). The percentage of bone formation in condylar osteochondroma was larger than was found in condylar hyperplasia (P = 0.04). Immunohistochemical staining showed that PCNA was mainly located in the undifferentiated mesenchymal layer and the hypertrophic cartilage layer, and there were more PCNA positive cells in the condylar osteochondroma (P = 0.007). EXT1 was mainly expressed in the cartilage layer, and there was also a higher positive rate of EXT1 in condylar osteochondroma (P = 0.0366). The thicker cartilage cap, higher bone formation rate and higher PCNA positive rate indicated a higher rate of proliferative activity in condylar osteochondroma. The more significant positive rate of EXT1 in condylar osteochondroma implied differential biological characteristic as compared to condylar hyperplasia. Conclusions These features might be useful in histopathologically distinguishing condylar hyperplasia and osteochondroma.

2006 ◽  
Vol 76 (3) ◽  
pp. 111-116 ◽  
Author(s):  
Hiroshi Matsuzaki ◽  
Misao Miwa

The purpose of this study was to clarify the effects of dietary calcium (Ca) supplementation on bone metabolism of magnesium (Mg)-deficient rats. Male Wistar rats were randomized by weight into three groups, and fed a control diet (control group), a Mg-deficient diet (Mg- group) or a Mg-deficient diet having twice the control Ca concentrations (Mg-2Ca group) for 14 days. Trabecular bone volume was significantly lower in the Mg - and Mg-2Ca groups than in the control group. Trabecular number was also significantly lower in the Mg - and Mg-2Ca groups than in the control group. Mineralizing bone surface, mineral apposition rate (MAR), and surface referent bone formation rate (BFR/BS) were significantly lower in the Mg - and Mg-2Ca groups than in the control group. Furthermore, MAR and BFR/BS were significantly lower in the Mg-2Ca group than in the Mg - group. These results suggest that dietary Ca supplementation suppresses bone formation in Mg-deficient rats.


1984 ◽  
Vol 246 (2) ◽  
pp. R190-R196 ◽  
Author(s):  
R. H. Drivdahl ◽  
C. C. Liu ◽  
D. J. Baylink

Weanling Sprague-Dawley rats subjected to varying degrees of low-Ca dietary stress (depletion) showed graded increases in the rate of endosteal bone formation when normal dietary Ca was restored (repletion). There was a strong positive correlation between the rate of bone resorption in depletion and the rate of bone formation attained after 1 wk of repletion. However, bone formation declined rapidly within the first 4 wk of repletion, despite the persistence of a substantial endosteal bone volume deficit. Furthermore the medullary area (indicative of bone volume) did not by itself determine the bone formation rate. Bone volume in test groups was restored to control levels after 6 mo of repletion, and this result could be predicted by a kinetic analysis. Thus, although very high rates of formation in early repletion decline rapidly, smaller increments relative to controls must be sustained for long periods. Our data indicate that increased formation rats at all stages of repletion are a consequence of elevations in both osteoblast number and osteoblast activity.


2001 ◽  
Vol 281 (2) ◽  
pp. E283-E288 ◽  
Author(s):  
Dennis L. Andress

Insulin-like growth factor binding protein-5 (IGFBP-5) is an osteoblast secretory protein that becomes incorporated into the mineralized bone matrix. In osteoblast cultures, IGFBP-5 stimulates cell proliferation by an IGF-independent mechanism. To evaluate whether IGFBP-5 can stimulate osteoblast activity and enhance bone accretion in a mouse model of osteoblast insufficiency, daily subcutaneous injections of either intact [IGFBP-5 (intact)] or carboxy-truncated IGFBP-5 [IGFBP-5-(1–169)] were given to ovariectomized (OVX) mice for 8 wk. Femur and spine bone mineral density (BMD), measured every 2 wk, showed early and sustained increases in response to IGFBP-5. Bone histomorphometry of cancellous bone showed significant elevations in the bone formation rate in both the femur metaphysis [IGFBP-5- (1)] only) and spine compared with OVX controls. IGFBP-5 also stimulated osteoblast number in the femur IGFBP-5-(1–169) only) and spine. These data indicate that IGFBP-5 effectively enhances bone formation and bone accretion in OVX mice by stimulating osteoblast activity. The finding that IGFBP-5-(1–169) is bioactive in vivo indicates that the carboxy-terminal portion is not required for this bone anabolic effect.


1986 ◽  
Vol 251 (4) ◽  
pp. E400-E406 ◽  
Author(s):  
P. J. Marie ◽  
L. Cancela ◽  
N. Le Boulch ◽  
L. Miravet

The effects of pregnancy and lactation on endosteal bone formation and resorption were evaluated in vitamin D-depleted (-D) and vitamin D-repleted (+D) rats. Pregnancy induced a marked stimulation of osteoclastic bone resorption and of static and dynamic parameters of bone formation and mineralization. Bone resorption increased independently of vitamin D status and did not correlate with plasma 1,25-dihydroxyvitamin D3 [1,25(OH)2D] levels, but it was associated with increased plasma immunoreactive parathyroid hormone (iPTH) concentrations. Stimulation of the endosteal bone formation rate was mainly impaired in D-depleted rats, resulting in trabecular bone loss, which, in -D mother rats, was associated with decreased bone ash and total bone calcium. Lactation further stimulated bone resorption and reduced the trabecular bone volume; ash weight and bone calcium content were also decreased independently of the vitamin D status and changes in plasma iPTH levels. In presence of vitamin D, the bone formation rate increased fourfold during lactation but was unchanged in -D lactating rats. During lactation, vitamin D-depleted rats lost twofold more calcified bone than +D rats because of impaired mineralization. Thus, the present study shows that both the endosteal bone resorption and formation are stimulated by pregnancy and lactation and that vitamin D is required for normal bone mineralization during the reproductive period.


2010 ◽  
Vol 299 (3) ◽  
pp. E426-E436 ◽  
Author(s):  
Panan Suntornsaratoon ◽  
Kannikar Wongdee ◽  
Suchandra Goswami ◽  
Nateetip Krishnamra ◽  
Narattaphol Charoenphandhu

The lactogenic hormone prolactin (PRL) directly regulates osteoblast functions in vitro and modulates bone remodeling in nulliparous rats, but its osteoregulatory roles in pregnant and lactating rats with physiological hyperprolactinemia remained unclear. Herein, bone changes were investigated in rats treated with bromocriptine (Bromo), an inhibitor of pituitary PRL release, or Bromo+PRL at different reproductive phases, from mid-pregnancy to late lactation. PRL receptors were strongly expressed in osteoblasts lining bone trabeculae, indicating bone as a target of PRL actions. By using dual energy X-ray absorptiometry, we found a significant increase in bone mineral density in the femora and vertebrae of pregnant rats. Such pregnancy-induced bone gain was, however, PRL independent and may have resulted from the increased cortical thickness. Bone trabeculae were modestly changed during pregnancy as evaluated by bone histomorphometry. On the other hand, lactating rats, especially in late lactation, showed massive bone loss in bone trabeculae but not in cortical shells. Further study in Bromo- and Bromo+PRL-treated rats suggested that PRL contributed to decreases in trabecular bone volume and number and increases in trabecular separation and eroded surface, as well as a paradoxical increase in bone formation rate in late lactation. Uncoupling of trabecular bone formation and resorption was evident in lactating rats, with the latter being predominant. In conclusion, pregnancy mainly induced cortical bone gain, whereas lactation led to trabecular bone loss in both long bones and vertebrae. Although PRL was not responsible for the pregnancy-induced bone gain, it was an important regulator of bone modeling during lactation.


Sign in / Sign up

Export Citation Format

Share Document