Bone modeling in bromocriptine-treated pregnant and lactating rats: possible osteoregulatory role of prolactin in lactation

2010 ◽  
Vol 299 (3) ◽  
pp. E426-E436 ◽  
Author(s):  
Panan Suntornsaratoon ◽  
Kannikar Wongdee ◽  
Suchandra Goswami ◽  
Nateetip Krishnamra ◽  
Narattaphol Charoenphandhu

The lactogenic hormone prolactin (PRL) directly regulates osteoblast functions in vitro and modulates bone remodeling in nulliparous rats, but its osteoregulatory roles in pregnant and lactating rats with physiological hyperprolactinemia remained unclear. Herein, bone changes were investigated in rats treated with bromocriptine (Bromo), an inhibitor of pituitary PRL release, or Bromo+PRL at different reproductive phases, from mid-pregnancy to late lactation. PRL receptors were strongly expressed in osteoblasts lining bone trabeculae, indicating bone as a target of PRL actions. By using dual energy X-ray absorptiometry, we found a significant increase in bone mineral density in the femora and vertebrae of pregnant rats. Such pregnancy-induced bone gain was, however, PRL independent and may have resulted from the increased cortical thickness. Bone trabeculae were modestly changed during pregnancy as evaluated by bone histomorphometry. On the other hand, lactating rats, especially in late lactation, showed massive bone loss in bone trabeculae but not in cortical shells. Further study in Bromo- and Bromo+PRL-treated rats suggested that PRL contributed to decreases in trabecular bone volume and number and increases in trabecular separation and eroded surface, as well as a paradoxical increase in bone formation rate in late lactation. Uncoupling of trabecular bone formation and resorption was evident in lactating rats, with the latter being predominant. In conclusion, pregnancy mainly induced cortical bone gain, whereas lactation led to trabecular bone loss in both long bones and vertebrae. Although PRL was not responsible for the pregnancy-induced bone gain, it was an important regulator of bone modeling during lactation.

Endocrinology ◽  
2003 ◽  
Vol 144 (5) ◽  
pp. 2008-2015 ◽  
Author(s):  
Yanfei L. Ma ◽  
Henry U. Bryant ◽  
Qingqiang Zeng ◽  
Allen Schmidt ◽  
Jennifer Hoover ◽  
...  

With the ready availability of several osteoporosis therapies, teriparatide [human PTH-(1–34)] is likely to be prescribed to postmenopausal women with prior exposure to agents that prevent bone loss, such as bisphosphonates, estrogen, or selective estrogen receptor modulators. Therefore, we evaluated the ability of once daily teriparatide to induce bone formation in ovariectomized (Ovx) rats with extended prior exposure to various antiresorptive agents, such as alendronate (ABP), 17α-ethinyl estradiol (EE), or raloxifene (Ral). Sprague Dawley rats were Ovx and treated with ABP (28 μg/kg, twice weekly), EE (0.1 mg/kg·d), or Ral (1 mg/kg·d) for 10 months before switching to teriparatide 30 μg/kg·d for another 2 months. Analysis of the proximal tibial metaphysis showed that all three antiresorptive agents prevented ovariectomy-induced bone loss after 10 months, but were mechanistically distinct, as shown by histomorphometry. Before teriparatide treatment, ABP strongly suppressed activation frequency and bone formation rate to below levels in other treatment groups, whereas these parameters were not different from sham values for EE or Ral. Trabecular area for ABP, EE, and Ral were greater than that in Ovx controls. However, the trabecular bone effects of ABP were attributed not only to effects on the secondary spongiosa, but also to the preservation of primary spongiosa, which was prevented from remodeling. After 2 months of teriparatide treatment, lumbar vertebra showed relative bone mineral density increases of 18%, 7%, 11%, and 10% for vehicle/teriparatide, ABP/teriparatide, EE/teriparatide, and Ral/teriparatide, respectively, compared with 10 month levels. Histomorphometry showed that trabecular area was increased by 105%, 113%, 36%, and 48% for vehicle/teriparatide, ABP/teriparatide, EE/teriparatide, and Ral/teriparatide, respectively, compared with 10 month levels. Teriparatide enhanced mineralizing surface, mineral apposition rate, and bone formation rate in all groups. Compression testing of vertebra showed that teriparatide improved strength (peak load) and toughness in all groups to a proportionately similar extent compared with 10 month levels. These data showed a surprising ability of the rat skeleton to respond to teriparatide despite extensive pretreatment with ABP, EE, or Ral. Therefore, the mature skeleton of Ovx rats remains highly responsive to the appositional effects of teriparatide regardless of pretreatment status in terms of cancellous bone area or rate of bone turnover.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Corinne E. Metzger ◽  
S. Anand Narayanan ◽  
Jon P. Elizondo ◽  
Anne Michal Carter ◽  
David C. Zawieja ◽  
...  

Abstract Chronic pediatric inflammatory bowel disease (IBD) leads to lack of bone accrual, bone loss, and increased fractures. Presently there is no cure, and many IBD treatments incur negative side effects. We previously discovered treatment with exogenous irisin resolved inflammatory changes in the colon, gut lymphatics, and bone in a mild IBD rodent model. Here we assess irisin treatment in severe IBD induced via dextran sodium sulfate (DSS). Male Sprague Dawley rats (2-mo-old) were untreated (Con) or given 2% DSS in drinking water. In week two, half of each group (Con + Ir and DSS + Ir) received injections of recombinant irisin (i.p., 2x/wk). After 4 weeks, gut inflammation was associated with declines in bone mineral density and cancellous bone volume. Furthermore, elevated osteocyte TNF-α, interleukin-6, RANKL, OPG, and sclerostin corresponded with higher osteoclast surfaces and lower bone formation rate in DSS animals as well as lower ultimate load. While irisin treatment improved colon inflammation, there were no improvements in bone density or bone mechanical properties; however, irisin elevated bone formation rate, decreased osteoclast surfaces, and reduced osteocyte pro-inflammatory factors. These data highlight the negative impact of chronic gut inflammation on bone as well as the therapeutic potential of irisin as an anti-inflammatory treatment.


1998 ◽  
Vol 12 (1) ◽  
pp. 71-75 ◽  
Author(s):  
S. Williams ◽  
A. Wakisaka ◽  
Q.Q. Zeng ◽  
J. Barnes ◽  
S. Seyedin ◽  
...  

The effect of oral minocycline on osteopenia in ovariectomized (OVX) old rats was examined in this study. Rats were divided into 4 groups: sham-operated, OVX followed by treatment with vehicle, minocycline, or 17β-estradiol. The treatment was initiated one day after OVX and proceeded for 8 wks. OVX reduced bone mineral density (BMD) in the whole femur and in the femoral regions that are enriched in trabecular bone. Treatment with minocycline or estrogen prevented a decrease in BMD. Femoral trabecular bone area, trabecular number, and trabecular thickness were reduced, and trabecular separation was increased by OVX. Treatment with minocycline or estrogen abolished the detrimental effects induced by OVX. OVX also reduced indices that reflect the interconnectivity of trabecular bone, and the loss of trabecular connectivity was prevented by treatment with minocycline or estrogen. Based on the levels of urinary pyridinoline, we showed that the effect of estrogen, but not minocycline, was primarily through its inhibitory effect on bone resorption. Analysis of bone turnover activity suggests that OVX increased parameters associated with bone resorption (eroded surface) and formation (osteoid surface, mineralizing surface, mineral apposition rate, and bone formation rate). Treatment with minocycline reduced bone resorption modestly and stimulated bone formation substantially. In contrast, treatment with estrogen drastically reduced parameters associated with both bone resorption and formation. We have concluded that oral minocycline can effectively prevent the decrease in BMD and trabecular bone through its dual effects on bone resorption and formation.


Endocrinology ◽  
2005 ◽  
Vol 146 (8) ◽  
pp. 3652-3659 ◽  
Author(s):  
Aline Martin ◽  
Raphaël de Vittoris ◽  
Valentin David ◽  
Ricardo Moraes ◽  
Martine Bégeot ◽  
...  

Abstract In vitro studies have demonstrated leptin-positive effects on the osteoblast lineage and negative effects on osteoclastogenesis. Therefore, we tested the hypothesis that leptin may prevent tail-suspension-induced bone loss characterized by an uncoupling pattern of bone remodeling, through both mechanisms. Female rats were randomly tail-suspended or not and treated either with ip administration of leptin or vehicle for 3, 7, and 14 d. As measured by dual energy x-ray absorptiometry, tail-suspension induced a progressive decrease in tibia-metaphysis bone mineral density, which was prevented by leptin. Histomorphometry showed that this was related to the prevention of the transient increase in osteoclast number observed with suspension at d 7. These effects could be mediated by the receptor activator of nuclear factor κB-ligand (RANKL)/osteoprotegerin (OPG) pathway since we observed using direct RT-PCR, a suspension-induced increase in RANKL gene expression in proximal tibia at d 3, which was counterbalanced by leptin administration with a similar 3-fold increase in OPG expression and a RANKL to OPG ratio close to nonsuspended conditions. In addition, leptin prevented the decrease in bone formation rate induced by tail-suspension at d 14. The latter could be related to the role of leptin in mediating the reciprocal differentiation between adipocytes and osteoblasts, because leptin concurrently blunted the disuse-induced increase in bone marrow adipogenesis. In summary, these data suggest that peripheral administration of leptin could prevent disuse-induced bone loss through, first, a major inhibitory effect on bone resorption and, second, a delayed effect preventing the decrease in bone formation.


2001 ◽  
Vol 281 (2) ◽  
pp. E283-E288 ◽  
Author(s):  
Dennis L. Andress

Insulin-like growth factor binding protein-5 (IGFBP-5) is an osteoblast secretory protein that becomes incorporated into the mineralized bone matrix. In osteoblast cultures, IGFBP-5 stimulates cell proliferation by an IGF-independent mechanism. To evaluate whether IGFBP-5 can stimulate osteoblast activity and enhance bone accretion in a mouse model of osteoblast insufficiency, daily subcutaneous injections of either intact [IGFBP-5 (intact)] or carboxy-truncated IGFBP-5 [IGFBP-5-(1–169)] were given to ovariectomized (OVX) mice for 8 wk. Femur and spine bone mineral density (BMD), measured every 2 wk, showed early and sustained increases in response to IGFBP-5. Bone histomorphometry of cancellous bone showed significant elevations in the bone formation rate in both the femur metaphysis [IGFBP-5- (1)] only) and spine compared with OVX controls. IGFBP-5 also stimulated osteoblast number in the femur IGFBP-5-(1–169) only) and spine. These data indicate that IGFBP-5 effectively enhances bone formation and bone accretion in OVX mice by stimulating osteoblast activity. The finding that IGFBP-5-(1–169) is bioactive in vivo indicates that the carboxy-terminal portion is not required for this bone anabolic effect.


1986 ◽  
Vol 251 (4) ◽  
pp. E400-E406 ◽  
Author(s):  
P. J. Marie ◽  
L. Cancela ◽  
N. Le Boulch ◽  
L. Miravet

The effects of pregnancy and lactation on endosteal bone formation and resorption were evaluated in vitamin D-depleted (-D) and vitamin D-repleted (+D) rats. Pregnancy induced a marked stimulation of osteoclastic bone resorption and of static and dynamic parameters of bone formation and mineralization. Bone resorption increased independently of vitamin D status and did not correlate with plasma 1,25-dihydroxyvitamin D3 [1,25(OH)2D] levels, but it was associated with increased plasma immunoreactive parathyroid hormone (iPTH) concentrations. Stimulation of the endosteal bone formation rate was mainly impaired in D-depleted rats, resulting in trabecular bone loss, which, in -D mother rats, was associated with decreased bone ash and total bone calcium. Lactation further stimulated bone resorption and reduced the trabecular bone volume; ash weight and bone calcium content were also decreased independently of the vitamin D status and changes in plasma iPTH levels. In presence of vitamin D, the bone formation rate increased fourfold during lactation but was unchanged in -D lactating rats. During lactation, vitamin D-depleted rats lost twofold more calcified bone than +D rats because of impaired mineralization. Thus, the present study shows that both the endosteal bone resorption and formation are stimulated by pregnancy and lactation and that vitamin D is required for normal bone mineralization during the reproductive period.


2018 ◽  
Vol 238 (1) ◽  
pp. 13-23 ◽  
Author(s):  
Thomas Funck-Brentano ◽  
Karin H Nilsson ◽  
Robert Brommage ◽  
Petra Henning ◽  
Ulf H Lerner ◽  
...  

WNT signaling is involved in the tumorigenesis of various cancers and regulates bone homeostasis. Palmitoleoylation of WNTs by Porcupine is required for WNT activity. Porcupine inhibitors are under development for cancer therapy. As the possible side effects of Porcupine inhibitors on bone health are unknown, we determined their effects on bone mass and strength. Twelve-week-old C57BL/6N female mice were treated by the Porcupine inhibitors LGK974 (low dose = 3 mg/kg/day; high dose = 6 mg/kg/day) or Wnt-C59 (10 mg/kg/day) or vehicle for 3 weeks. Bone parameters were assessed by serum biomarkers, dual-energy X-ray absorptiometry, µCT and histomorphometry. Bone strength was measured by the 3-point bending test. The Porcupine inhibitors were well tolerated demonstrated by normal body weight. Both doses of LGK974 and Wnt-C59 reduced total body bone mineral density compared with vehicle treatment (P < 0.001). Cortical thickness of the femur shaft (P < 0.001) and trabecular bone volume fraction in the vertebral body (P < 0.001) were reduced by treatment with LGK974 or Wnt-C59. Porcupine inhibition reduced bone strength in the tibia (P < 0.05). The cortical bone loss was the result of impaired periosteal bone formation and increased endocortical bone resorption and the trabecular bone loss was caused by reduced trabecular bone formation and increased bone resorption. Porcupine inhibitors exert deleterious effects on bone mass and strength caused by a combination of reduced bone formation and increased bone resorption. We suggest that cancer targeted therapies using Porcupine inhibitors may increase the risk of fractures.


1998 ◽  
Vol 12 (1) ◽  
pp. 76-81 ◽  
Author(s):  
T. Sasaki ◽  
N.S. Ramamurthy ◽  
L.M. Golub

The effect of a new non-antimicrobial analog of tetracycline (CMT-8) on bone loss in ovariectomized (OVX) rats was examined. Three-month-old female rats were ovariectomized, and one week later, were distributed into 3 groups: sham-operated non-OVX controls, vehicle-treated OVX controls, and CMT-8-treated OVX rats. After 145 days of daily CMT-8 administration, the intact femurs were dissected and examined by several histological and histomorphometric techniques. OVX significantly (p < 0.01) decreased trabecular bone volume by 53.4% in the metaphyses compared with sham-operated controls. CMT-8 therapy produced a significant (p < 0.05) inhibition of trabecular bone loss and also induced bone formation in the OVX rats. Of interest, the newly synthesized bone in the CMT-treated OVX rats was found to increase the "connectivity" of the trabecular "struts" by bridging the adjacent longitudinal bone trabeculae, forming dense, platelike bone trabeculae. These results strongly suggest that long-term CMT-8 therapy effectively inhibits bone loss after OVX, not only by inhibiting bone resorption but also by inducing new bone formation in the trabecular areas of long bones.


2015 ◽  
Vol 309 (11) ◽  
pp. E936-E948 ◽  
Author(s):  
Kanogwun Thongchote ◽  
Saovaros Svasti ◽  
Jarinthorn Teerapornpuntakit ◽  
Panan Suntornsaratoon ◽  
Nateetip Krishnamra ◽  
...  

β-Thalassemia, a hereditary anemic disorder, is often associated with skeletal complications that can be found in both males and females. The present study aimed to investigate the age- and sex-dependent changes in bone mineral density (BMD) and trabecular microstructure in βIVSII-654knockin thalassemic mice. Dual-energy X-ray absorptiometry and computer-assisted bone histomorphometry were employed to investigate temporal changes in BMD and histomorphometric parameters in male and female mice of a βIVSII-654knockin mouse model of human β-thalassemia, in which impaired splicing of β-globin transcript was caused by hemizygous C→T mutation at nucleotide 654 of intron 2. Young, growing βIVSII-654mice (1 mo old) manifested shorter bone length and lower BMD than their wild-type littermates, indicating possible growth retardation and osteopenia, the latter of which persisted until 8 mo of age (adult mice). Interestingly, two-way analysis of variance suggested an interaction between sex and βIVSII-654genotype, i.e., more severe osteopenia in adult female mice. Bone histomorphometry further suggested that low trabecular bone volume in male βIVSII-654mice, particularly during a growing period (1–2 mo), was primarily due to suppression of bone formation, whereas both a low bone formation rate and a marked increase in osteoclast surface were observed in female βIVSII-654mice. In conclusion, osteopenia and trabecular microstructural defects were present in both male and female βIVSII-654knockin thalassemic mice, but the severity, disease progression, and cellular mechanism differed between the sexes.


2012 ◽  
Vol 97 (8) ◽  
pp. 2782-2791 ◽  
Author(s):  
Adi Cohen ◽  
David W. Dempster ◽  
Emily M. Stein ◽  
Thomas L. Nickolas ◽  
Hua Zhou ◽  
...  

Abstract Context: We have previously reported that premenopausal women with idiopathic osteoporosis based on fractures (IOP) or idiopathic low bone mineral density (ILBMD) exhibit markedly reduced bone mass, profoundly abnormal trabecular microstructure, and significant deficits in trabecular bone stiffness. Bone remodeling was heterogeneous. Those with low bone turnover had evidence of osteoblast dysfunction and the most marked deficits in microstructure and stiffness. Objective: Because osteoblasts and marrow adipocytes derive from a common mesenchymal precursor and excess marrow fat has been implicated in the pathogenesis of bone fragility in anorexia nervosa, glucocorticoid excess, and thiazolidinedione exposure, we hypothesized that marrow adiposity would be higher in affected women and inversely related to bone mass, microarchitecture, bone formation rate, and osteoblast number. Design: We analyzed tetracycline-labeled transiliac biopsy specimens in 64 premenopausal women with IOP or ILBMD and 40 controls by three-dimensional micro-computed tomography and two-dimensional quantitative histomorphometry to assess marrow adipocyte number, perimeter, and area. Results: IOP and ILBMD subjects did not differ with regard to any adipocyte parameter, and thus results were combined. Subjects had substantially higher adipocyte number (by 22%), size (by 24%), and volume (by 26%) than controls (P &lt; 0.0001 for all). Results remained significant after adjusting for age, body mass index, and bone volume. Controls demonstrated expected direct associations between marrow adiposity and age and inverse relationships between marrow adiposity and bone formation, volume, and microstructure measures. No such relationships were observed in the subjects. Conclusions: Higher marrow adiposity and the absence of expected relationships between marrow adiposity and bone microstructure and remodeling in women with IOP or ILBMD suggest that the relationships between fat and bone are abnormal; excess marrow fat may not arise from a switch from the osteoblast to the adipocyte lineage in this disorder. Whether excess marrow fat contributes to the pathogenesis of this disorder remains unclear.


Sign in / Sign up

Export Citation Format

Share Document