scholarly journals Glycosphingolipids and neuroinflammation in Parkinson’s disease

2020 ◽  
Vol 15 (1) ◽  
Author(s):  
Karim Belarbi ◽  
Elodie Cuvelier ◽  
Marie-Amandine Bonte ◽  
Mazarine Desplanque ◽  
Bernard Gressier ◽  
...  

Abstract Parkinson's disease is a progressive neurodegenerative disease characterized by the loss of dopaminergic neurons of the nigrostriatal pathway and the formation of neuronal inclusions known as Lewy bodies. Chronic neuroinflammation, another hallmark of the disease, is thought to play an important role in the neurodegenerative process. Glycosphingolipids are a well-defined subclass of lipids that regulate crucial aspects of the brain function and recently emerged as potent regulators of the inflammatory process. Deregulation in glycosphingolipid metabolism has been reported in Parkinson’s disease. However, the interrelationship between glycosphingolipids and neuroinflammation in Parkinson’s disease is not well known. This review provides a thorough overview of the links between glycosphingolipid metabolism and immune-mediated mechanisms involved in neuroinflammation in Parkinson’s disease. After a brief presentation of the metabolism and function of glycosphingolipids in the brain, it summarizes the evidences supporting that glycosphingolipids (i.e. glucosylceramides or specific gangliosides) are deregulated in Parkinson’s disease. Then, the implications of these deregulations for neuroinflammation, based on data from human inherited lysosomal glycosphingolipid storage disorders and gene-engineered animal studies are outlined. Finally, the key molecular mechanisms by which glycosphingolipids could control neuroinflammation in Parkinson’s disease are highlighted. These include inflammasome activation and secretion of pro-inflammatory cytokines, altered calcium homeostasis, changes in the blood-brain barrier permeability, recruitment of peripheral immune cells or production of autoantibodies.

Author(s):  
Rahel Feleke ◽  
Regina H. Reynolds ◽  
Amy M. Smith ◽  
Bension Tilley ◽  
Sarah A. Gagliano Taliun ◽  
...  

AbstractParkinson’s disease (PD), Parkinson’s disease with dementia (PDD) and dementia with Lewy bodies (DLB) are three clinically, genetically and neuropathologically overlapping neurodegenerative diseases collectively known as the Lewy body diseases (LBDs). A variety of molecular mechanisms have been implicated in PD pathogenesis, but the mechanisms underlying PDD and DLB remain largely unknown, a knowledge gap that presents an impediment to the discovery of disease-modifying therapies. Transcriptomic profiling can contribute to addressing this gap, but remains limited in the LBDs. Here, we applied paired bulk-tissue and single-nucleus RNA-sequencing to anterior cingulate cortex samples derived from 28 individuals, including healthy controls, PD, PDD and DLB cases (n = 7 per group), to transcriptomically profile the LBDs. Using this approach, we (i) found transcriptional alterations in multiple cell types across the LBDs; (ii) discovered evidence for widespread dysregulation of RNA splicing, particularly in PDD and DLB; (iii) identified potential splicing factors, with links to other dementia-related neurodegenerative diseases, coordinating this dysregulation; and (iv) identified transcriptomic commonalities and distinctions between the LBDs that inform understanding of the relationships between these three clinical disorders. Together, these findings have important implications for the design of RNA-targeted therapies for these diseases and highlight a potential molecular “window” of therapeutic opportunity between the initial onset of PD and subsequent development of Lewy body dementia.


2022 ◽  
Vol 8 (1) ◽  
Author(s):  
Epaminondas Doxakis

AbstractParkinson’s disease (PD) is a complex, age-related, neurodegenerative disease whose etiology, pathology, and clinical manifestations remain incompletely understood. As a result, care focuses primarily on symptoms relief. Circular RNAs (circRNAs) are a large class of mostly noncoding RNAs that accumulate with aging in the brain and are increasingly shown to regulate all aspects of neuronal and glial development and function. They are generated by the spliceosome through the backsplicing of linear RNA. Although their biological role remains largely unknown, they have been shown to regulate transcription and splicing, act as decoys for microRNAs and RNA binding proteins, used as templates for translation, and serve as scaffolding platforms for signaling components. Considering that they are stable, diverse, and detectable in easily accessible biofluids, they are deemed promising biomarkers for diagnosing diseases. CircRNAs are differentially expressed in the brain of patients with PD, and growing evidence suggests that they regulate PD pathogenetic processes. Here, the biogenesis, expression, degradation, and detection of circRNAs, as well as their proposed functions, are reviewed. Thereafter, research linking circRNAs to PD-related processes, including aging, alpha-synuclein dysregulation, neuroinflammation, and oxidative stress is highlighted, followed by recent evidence for their use as prognostic and diagnostic biomarkers for PD.


Cells ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 2565
Author(s):  
Ga Ram Jeong ◽  
Byoung Dae Lee

Mutations in the gene encoding leucine-rich repeat kinase 2 (LRRK2) are common genetic risk factors for both familial and sporadic Parkinson’s disease (PD). Pathogenic mutations in LRRK2 have been shown to induce changes in its activity, and abnormal increase in LRRK2 kinase activity is thought to contribute to PD pathology. The precise molecular mechanisms underlying LRRK2-associated PD pathology are far from clear, however the identification of LRRK2 substrates and the elucidation of cellular pathways involved suggest a role of LRRK2 in microtubule dynamics, vesicular trafficking, and synaptic transmission. Moreover, LRRK2 is associated with pathologies of α-synuclein, a major component of Lewy bodies (LBs). Evidence from various cellular and animal models supports a role of LRRK2 in the regulation of aggregation and propagation of α-synuclein. Here, we summarize our current understanding of how pathogenic mutations dysregulate LRRK2 and discuss the possible mechanisms leading to neurodegeneration.


Brain ◽  
2020 ◽  
Vol 143 (5) ◽  
pp. 1476-1497 ◽  
Author(s):  
Min Guo ◽  
Jian Wang ◽  
Yanxin Zhao ◽  
Yiwei Feng ◽  
Sida Han ◽  
...  

Abstract Accumulation of neuronal α-synuclein is a prominent feature in Parkinson’s disease. More recently, such abnormal protein aggregation has been reported to spread from cell to cell and exosomes are considered as important mediators. The focus of such research, however, has been primarily in neurons. Given the increasing recognition of the importance of non-cell autonomous-mediated neurotoxicity, it is critical to investigate the contribution of glia to α-synuclein aggregation and spread. Microglia are the primary phagocytes in the brain and have been well-documented as inducers of neuroinflammation. How and to what extent microglia and their exosomes impact α-synuclein pathology has not been well delineated. We report here that when treated with human α-synuclein preformed fibrils, exosomes containing α-synuclein released by microglia are fully capable of inducing protein aggregation in the recipient neurons. Additionally, when combined with microglial proinflammatory cytokines, these exosomes further increased protein aggregation in neurons. Inhibition of exosome synthesis in microglia reduced α-synuclein transmission. The in vivo significance of these exosomes was demonstrated by stereotaxic injection of exosomes isolated from α-synuclein preformed fibrils treated microglia into the mouse striatum. Phosphorylated α-synuclein was observed in multiple brain regions consistent with their neuronal connectivity. These animals also exhibited neurodegeneration in the nigrostriatal pathway in a time-dependent manner. Depleting microglia in vivo dramatically suppressed the transmission of α-synuclein after stereotaxic injection of preformed fibrils. Mechanistically, we report here that α-synuclein preformed fibrils impaired autophagy flux by upregulating PELI1, which in turn, resulted in degradation of LAMP2 in activated microglia. More importantly, by purifying microglia/macrophage derived exosomes in the CSF of Parkinson’s disease patients, we confirmed the presence of α-synuclein oligomer in CD11b+ exosomes, which were able to induce α-synuclein aggregation in neurons, further supporting the translational aspect of this study. Taken together, our study supports the view that microglial exosomes contribute to the progression of α-synuclein pathology and therefore, they may serve as a promising therapeutic target for Parkinson’s disease.


Cells ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 2289 ◽  
Author(s):  
Sanjanie Fernando ◽  
Claire Y. Allan ◽  
Katelyn Mroczek ◽  
Xavier Pearce ◽  
Oana Sanislav ◽  
...  

Alpha synuclein has been linked to both sporadic and familial forms of Parkinson’s disease (PD) and is the most abundant protein in Lewy bodies a hallmark of Parkinson’s disease. The function of this protein and the molecular mechanisms underlying its toxicity are still unclear, but many studies have suggested that the mechanism of α-synuclein toxicity involves alterations to mitochondrial function. Here we expressed human α-synuclein and two PD-causing α-synuclein mutant proteins (with a point mutation, A53T, and a C-terminal 20 amino acid truncation) in the eukaryotic model Dictyostelium discoideum. Mitochondrial disease has been well studied in D. discoideum and, unlike in mammals, mitochondrial dysfunction results in a clear set of defective phenotypes. These defective phenotypes are caused by the chronic hyperactivation of the cellular energy sensor, AMP-activated protein kinase (AMPK). Expression of α-synuclein wild type and mutant forms was toxic to the cells and mitochondrial function was dysregulated. Some but not all of the defective phenotypes could be rescued by down regulation of AMPK revealing both AMPK-dependent and -independent mechanisms. Importantly, we also show that the C-terminus of α-synuclein is required and sufficient for the localisation of the protein to the cell cortex in D. discoideum.


2019 ◽  
Vol 116 (36) ◽  
pp. 17963-17969 ◽  
Author(s):  
Katsuya Araki ◽  
Naoto Yagi ◽  
Koki Aoyama ◽  
Chi-Jing Choong ◽  
Hideki Hayakawa ◽  
...  

Many neurodegenerative diseases are characterized by the accumulation of abnormal protein aggregates in the brain. In Parkinson’s disease (PD), α-synuclein (α-syn) forms such aggregates called Lewy bodies (LBs). Recently, it has been reported that aggregates of α-syn with a cross-β structure are capable of propagating within the brain in a prionlike manner. However, the presence of cross-β sheet-rich aggregates in LBs has not been experimentally demonstrated so far. Here, we examined LBs in thin sections of autopsy brains of patients with PD using microbeam X-ray diffraction (XRD) and found that some of them gave a diffraction pattern typical of a cross-β structure. This result confirms that LBs in the brain of PD patients contain amyloid fibrils with a cross-β structure and supports the validity of in vitro propagation experiments using artificially formed amyloid fibrils of α-syn. Notably, our finding supports the concept that PD is a type of amyloidosis, a disease featuring the accumulation of amyloid fibrils of α-syn.


2008 ◽  
Vol 363 (1500) ◽  
pp. 2215-2227 ◽  
Author(s):  
Yoshikuni Mizuno ◽  
Nobutaka Hattori ◽  
Shin-ichiro Kubo ◽  
Shigeto Sato ◽  
Kenya Nishioka ◽  
...  

Recent progresses in the pathogenesis of sporadic Parkinson's disease (PD) and genetics of familial PD are reviewed. There are common molecular events between sporadic and familial PD, particularly between sporadic PD and PARK1 -linked PD due to α - synuclein ( SNCA ) mutations. In sporadic form, interaction of genetic predisposition and environmental factors is probably a primary event inducing mitochondrial dysfunction and oxidative damage resulting in oligomer and aggregate formations of α-synuclein. In PARK1 -linked PD, mutant α-synuclein proteins initiate the disease process as they have increased tendency for self-aggregation. As highly phosphorylated aggregated proteins are deposited in nigral neurons in PD, dysfunctions of proteolytic systems, i.e. the ubiquitin–proteasome system and autophagy–lysosomal pathway, seem to be contributing to the final neurodegenerative process. Studies on the molecular mechanisms of nigral neuronal death in familial forms of PD will contribute further on the understanding of the pathogenesis of sporadic PD.


2016 ◽  
Vol 2016 ◽  
pp. 1-14 ◽  
Author(s):  
Peng Wang ◽  
Xin Li ◽  
Xuran Li ◽  
Weiwei Yang ◽  
Shun Yu

A pathological hallmark of Parkinson’s disease (PD) is formation of Lewy bodies in neurons of the brain. This has been attributed to the spread of α-synuclein (α-syn) aggregates, which involves release of α-syn from a neuron and its reuptake by a neighboring neuron. We found that treatment with plasma from PD patients induced more α-syn phosphorylation and oligomerization than plasma from normal subjects (NS). Compared with NS plasma, PD plasma added to primary neuron cultures caused more cell death in the presence of extracellular α-syn. This was supported by the observations that phosphorylated α-syn oligomers entered neurons, rapidly increased accumulated thioflavin S-positive inclusions, and induced a series of metabolic changes that included activation of polo-like kinase 2, inhibition of glucocerebrosidase and protein phosphatase 2A, and reduction of ceramide levels, all of which have been shown to promote α-syn phosphorylation and aggregation. We also analyzed neurotoxicity of α-syn oligomers relative to plasma from different patients. Neurotoxicity was not related to age or gender of the patients. However, neurotoxicity was positively correlated with H&Y staging score. The modification in the plasma may promote spreading of α-syn aggregates via an alternative pathway and accelerate progression of PD.


2021 ◽  
Vol 15 ◽  
Author(s):  
Noritaka Wakasugi ◽  
Takashi Hanakawa

Alzheimer’s disease (AD) is the leading cause of dementia due to neurodegeneration and is characterized by extracellular senile plaques composed of amyloid β1–42 (Aβ) as well as intracellular neurofibrillary tangles consisting of phosphorylated tau (p-tau). Dementia with Lewy bodies constitutes a continuous spectrum with Parkinson’s disease, collectively termed Lewy body disease (LBD). LBD is characterized by intracellular Lewy bodies containing α-synuclein (α-syn). The core clinical features of AD and LBD spectra are distinct, but the two spectra share common cognitive and behavioral symptoms. The accumulation of pathological proteins, which acquire pathogenicity through conformational changes, has long been investigated on a protein-by-protein basis. However, recent evidence suggests that interactions among these molecules may be critical to pathogenesis. For example, Aβ/tau promotes α-syn pathology, and α-syn modulates p-tau pathology. Furthermore, clinical evidence suggests that these interactions may explain the overlapping pathology between AD and LBD in molecular imaging and post-mortem studies. Additionally, a recent hypothesis points to a common mechanism of prion-like progression of these pathological proteins, via neural circuits, in both AD and LBD. This suggests a need for understanding connectomics and their alterations in AD and LBD from both pathological and functional perspectives. In AD, reduced connectivity in the default mode network is considered a hallmark of the disease. In LBD, previous studies have emphasized abnormalities in the basal ganglia and sensorimotor networks; however, these account for movement disorders only. Knowledge about network abnormalities common to AD and LBD is scarce because few previous neuroimaging studies investigated AD and LBD as a comprehensive cohort. In this paper, we review research on the distribution and interactions of pathological proteins in the brain in AD and LBD, after briefly summarizing their clinical and neuropsychological manifestations. We also describe the brain functional and connectivity changes following abnormal protein accumulation in AD and LBD. Finally, we argue for the necessity of neuroimaging studies that examine AD and LBD cases as a continuous spectrum especially from the proteinopathy and neurocircuitopathy viewpoints. The findings from such a unified AD and Parkinson’s disease (PD) cohort study should provide a new comprehensive perspective and key data for guiding disease modification therapies targeting the pathological proteins in AD and LBD.


2021 ◽  
Author(s):  
Leo R Quinlan ◽  
Jara Maria Baena-Montes ◽  
Sahar Avazzadeh

α-synuclein is an increasingly prominent player in the pathology of a variety of neurodegenerative conditions. Parkinson’s disease (PD) is a neurodegenerative disorder that affects mainly the dopaminergic neurons in the substantia nigra of the brain. Typical of PD pathology is the finding of protein aggregations termed ‘Lewy bodies’ in the brain regions affected. α-synuclein is implicated in many disease states including dementia with Lewy bodies and Alzheimer’s disease. However, PD is the most common synucleinopathy and continues to be a significant focus of PD research in terms of the α-synuclein Lewy body pathology. Mutations in several genes are associated with PD development including SNCA, which encodes α-synuclein. A variety of model systems have been employed to study α-synuclein physiology and pathophysiology in an attempt to relate more closely to PD pathology. These models include cellular and animal system exploring transgenic technologies, viral vector expression and knockdown approaches, and models to study the potential prion protein-like effects of α-synuclein. The current review focuses on human induced pluripotent stem cell (iPSC) models with a specific focus on mutations or multiplications of the SNCA gene. iPSCs are a rapidly evolving technology with huge promise in the study of normal physiology and disease modeling in vitro. The ability to maintain a patient's genetic background and replicate similar cell phenotypes make iPSCs a powerful tool in the study of neurological diseases. This review focus on the current knowledge about α-synuclein physiological function as well as its role in PD pathogenesis based on human iPSC models.


Sign in / Sign up

Export Citation Format

Share Document