scholarly journals Amplification of spatially isolated adenosine pathway by tumor–macrophage interaction induces anti-PD1 resistance in hepatocellular carcinoma

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Jia-Cheng Lu ◽  
Peng-Fei Zhang ◽  
Xiao-Yong Huang ◽  
Xiao-Jun Guo ◽  
Chao Gao ◽  
...  

Abstract Background Immune checkpoint blockade resistance narrows the efficacy of cancer immunotherapies, but the underlying mechanism remains elusive. Delineating the inherent mechanisms of anti-PD1 resistance is important to improve outcome of patients with advanced HCC. Method The level of cricTMEM181 was measured in HCC patients with anti-PD1 therapy by RNA sequencing and then confirmed by qPCR and Sanger sequencing. Immune status in tumor microenvironment of HCC patients or mice models was evaluated by flow cytometry and IHC. Exosomes from HCC cell lines were isolated by ultracentrifugation, and their internalization by macrophage was confirmed by immunofluorescence. The underlying mechanism of HCC-derived exosomal circTMEM181 to macrophage was confirmed by SILAC, RNA FISH and RNA immunoprecipitation. The ATP–ADO pathway amplified by HCC–macrophage interaction was evaluated through ATP, AMP and ADO measurement and macrophage-specific CD39 knockout mice. The role of circTMEM181 in anti-PD1 therapy and its clinical significance were also determined in our retrospective HCC cohorts. Results Here, we found that circTMEM181 was elevated in hepatocellular carcinoma (HCC) patients responding poorly to anti-PD1 therapy and in HCC patients with a poor prognosis after operation. Moreover, we also found that high exosomal circTMEM181 favored the immunosuppressive microenvironment and endowed anti-PD1 resistance in HCC. Mechanistically, exosomal circTMEM181 sponged miR-488-3p and upregulated CD39 expression in macrophages. Using macrophage-specific CD39 knockout mice and pharmacologic approaches, we revealed a novel mode of anti-PD1 resistance in HCC. We discovered that cell-specific CD39 expression in macrophages and CD73 expression in HCC cells synergistically activated the eATP–adenosine pathway and produced more adenosine, thereby impairing CD8+ T cell function and driving anti-PD1 resistance. Conclusion In summary, HCC-derived exosomal circTMEM181 contributes to immunosuppression and anti-PD1 resistance by elevating CD39 expression, and inhibiting the ATP–adenosine pathway by targeting CD39 on macrophages can rescue anti-PD1 therapy resistance in HCC. Graphical Abstract

2021 ◽  
Vol 12 (4) ◽  
Author(s):  
Lifeng Feng ◽  
Miaoqin Chen ◽  
Yiling Li ◽  
Muchun Li ◽  
Shiman Hu ◽  
...  

Abstractp62/SQSTM1 is frequently up-regulated in many cancers including hepatocellular carcinoma. Highly expressed p62 promotes hepato-carcinogenesis by activating many signaling pathways including Nrf2, mTORC1, and NFκB signaling. However, the underlying mechanism for p62 up-regulation in hepatocellular carcinoma remains largely unclear. Herein, we confirmed that p62 was up-regulated in hepatocellular carcinoma and its higher expression was associated with shorter overall survival in patients. The knockdown of p62 in hepatocellular carcinoma cells decreased cell growth in vitro and in vivo. Intriguingly, p62 protein stability could be reduced by its acetylation at lysine 295, which was regulated by deacetylase Sirt1 and acetyltransferase GCN5. Acetylated p62 increased its association with the E3 ligase Keap1, which facilitated its poly-ubiquitination-dependent proteasomal degradation. Moreover, Sirt1 was up-regulated to deacetylate and stabilize p62 in hepatocellular carcinoma. Additionally, Hepatocyte Sirt1 conditional knockout mice developed much fewer liver tumors after Diethynitrosamine treatment, which could be reversed by the re-introduction of exogenous p62. Taken together, Sirt1 deacetylates p62 at lysine 295 to disturb Keap1-mediated p62 poly-ubiquitination, thus up-regulating p62 expression to promote hepato-carcinogenesis. Therefore, targeting Sirt1 or p62 is a reasonable strategy for the treatment of hepatocellular carcinoma.


2020 ◽  
Author(s):  
Shunjie Xia ◽  
Lin Ji ◽  
Zhe Wan ◽  
Yu Pan ◽  
Liye Tao ◽  
...  

Abstract BackgroundIdentifying novel and actional targets in hepatocellular carcinoma (HCC) remains an unmet medical need. TAK1 was originally identified as a TGF-β-activated kinase and was further proved to phosphorylate and activate numerous downstream targets and promote cancer progression. Although TAK1 depletion leads to early onset of hepatocarcinogenesis in mice, the role of TAK1 in developed HCC progression and targeted therapy resistance is poorly understood. MethodsThe expression of TAK1 and MTDH in HCC cell lines and patients and sorafenib-resistant models was analyzed by in silico analysis, quantitative real-time PCR, western blotting and immunohistochemistry. In vivo and In vitro experiments was introduced to examine the function of TAK1 or MTDH in HCC and sorafenib resistance using small interfering RNA and pharmacological inhibitors in combination with or without sorafenib. Co-immunoprecipitation and RNA immunoprecipitation was carried out to determine the binding between TAK1 and FBXW2 or between MTDH and FBXW2 RNA.ResultsOur findings unraveled the clinical significance of TAK1 in promoting HCC and sorafenib resistance. We identified a novel E3 ubiquitin ligase, FBXW2, targeting TAK1 for K48-linked polyubiquitylation and subsequent degradation. We also found that MTDH contributes to TAK1 upregulation in HCC and sorafenib resistance, through binding to FBXW2 mRNA and accelerate its degradation. Moreover, combination of TAK1 inhibitor and sorafenib suppressed the growth of sorafenib-resistant HCCLM3 xenograft in mouse models.ConclusionThese results revealed novel mechanism underlying TAK1 protein degradation and highlighted the therapeutic value of targeting TAK1 in suppressing HCC and overcoming sorafenib resistance.


Cancers ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 775 ◽  
Author(s):  
Shigeharu Nakano ◽  
Yuji Eso ◽  
Hirokazu Okada ◽  
Atsushi Takai ◽  
Ken Takahashi ◽  
...  

Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related death since most patients are diagnosed at advanced stage and the current systemic treatment options using molecular-targeted drugs remain unsatisfactory. However, the recent success of cancer immunotherapies has revolutionized the landscape of cancer therapy. Since HCC is characterized by metachronous multicentric occurrence, immunotherapies that induce systemic and durable responses could be an appealing treatment option. Despite the suppressive milieu of the liver and tumor immunosurveillance escape mechanisms, clinical studies of checkpoint inhibitors in patients with advanced HCC have yielded promising results. Here, we provide an update on recent advances in HCC immunotherapies. First, we describe the unique tolerogenic properties of hepatic immunity and its interaction with HCC and then review the status of already or nearly available immune checkpoint blockade-based therapies as well as other immunotherapy strategies at the preclinical or clinical trial stage.


2021 ◽  
Author(s):  
Xiaoling Zhang ◽  
Hao Liu ◽  
Rongjie Zhao ◽  
Qian Lu ◽  
Haidong Wang ◽  
...  

Abstract Background: Hepatocellular carcinoma (HCC) is one of the most common malignancies with high morbidity and mortality. Beta-1,3-galactosyltransferase 5 (b3galt5) plays crucial roles in protein glycosylation, but its function in HCC remains unclear. Here, we investigated the role and underlying mechanism of b3galt5 in HCC. Methods: B3galt5 expression was measured by western blotting in HCC patient specimens. The role of b3galt5 in hepatocarcinogenesis was determined by cell function assays and diethylnitrosamine (DEN)/TCPOBOP-induced mice HCC models. We performed metabolomics analysis and proteomic sequencing of liver cancer cells from b3galt5-knockdown mice. The glycolysis was detected by Seahorse XF96 extracellular flux analyzer.Results: B3galt5 is highly expressed and associated with a poor prognosis in HCC patients. In vitro studies showed that b3galt5 promoted the proliferation and survival of HCC cells. We also demonstrated that b3galt5 deficiency suppressed hepatocarcinogenesis in DEN/TCPOBOP-induced HCC. Further investigation confirmed that b3galt5 promoted aerobic glycolysis in HCC. Mechanistically, b3galt5 promoted glycolysis by activating the mTOR/p70s6k pathway through N-linked glycosylation modification. Moreover, p70s6k inhibition reduced the expression of key glycolytic enzymes and the glycolysis rate in b3galt5-overexpressing cells. Conclusions: Our study uncovers a novel mechanism by which b3galt5 mediates glycolysis in HCC and highlights the b3galt5-mTOR/p70s6k axis as a potential target for HCC therapy.


2021 ◽  
Author(s):  
Yanlin Du ◽  
Da Zhang ◽  
Yiru Wang ◽  
Ming Wu ◽  
Cuilin Zhang ◽  
...  

A highly stable multifunctional aptamer was prepared for strengthening antitumor immunity through a dual immune checkpoint blockade of CTLA-4 and PD-L1.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Stefanie Tietze ◽  
Susanne Michen ◽  
Gabriele Schackert ◽  
Achim Temme

Abstract Glioblastoma multiforme (GBM) is the most prevalent primary brain tumor endowed with a dismal prognosis. Nowadays, immunotherapy in a particular immune checkpoint blockade and therapeutic vaccines are being extensively pursued. Yet, several characteristics of GBM may impact such immunotherapeutic approaches. This includes tumor heterogeneity, the relatively low mutational load of primary GBM, insufficient delivery of antibodies to tumor parenchyma and the unique immunosuppressive microenvironment of GBM. Moreover, standard treatment of GBM, comprising temozolomide chemotherapy, radiotherapy and in most instances the application of glucocorticoids for management of brain edema, results in a further increased immunosuppression. This review will provide a brief introduction to the principles of vaccine-based immunotherapy and give an overview of the current clinical studies, which employed immune checkpoint inhibitors, oncolytic viruses-based vaccination, cell-based and peptide-based vaccines. Recent experiences as well as the latest developments are reviewed. Overcoming obstacles, which limit the induction and long-term immune response against GBM when using vaccination approaches, are necessary for the implementation of effective immunotherapy of GBM.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ryan Kolb ◽  
Umasankar De ◽  
Sajid Khan ◽  
Yuewan Luo ◽  
Myung-Chul Kim ◽  
...  

AbstractRegulatory T cells (Tregs) play an important role in maintaining immune homeostasis and, within tumors, their upregulation is common and promotes an immunosuppressive microenvironment. Therapeutic strategies that can eliminate Tregs in the tumor (i.e., therapies that do not run the risk of affecting normal tissues), are urgently needed for the development of cancer immunotherapies. Here we report our discovery of B-cell lymphoma extra-large (BCL-XL) as a potential molecular target of tumor-infiltrating (TI) Tregs. We show that pharmacological degradation of BCL-XL using a newly developed platelet-sparing BCL-XL Proteolysis-targeting chimera (PROTAC) induces the apoptosis of TI-Tregs and the activation of TI-CD8+ T cells. Moreover, these activities result in an effective suppression of syngeneic tumor growth in immunocompetent, but not in immunodeficient or CD8+ T cell-depleted mice. Notably, treatment with BCL-XL PROTAC does not cause detectable damage within several normal tissues or thrombocytopenia. These findings identify BCL-XL as a target in the elimination of TI-Tregs as a component of cancer immunotherapies, and that the BCL-XL-specific PROTAC has the potential to be developed as a therapeutic for cancer immunotherapy.


Cancers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 3740
Author(s):  
Chunye Zhang ◽  
Ming Yang

Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer, followed by cholangiocarcinoma (CCA). HCC is the third most common cause of cancer death worldwide, and its incidence is rising, associated with an increased prevalence of obesity and nonalcoholic fatty liver disease (NAFLD). However, current treatment options are limited. Genetic factors and epigenetic factors, influenced by age and environment, significantly impact the initiation and progression of NAFLD-related HCC. In addition, both transcriptional factors and post-transcriptional modification are critically important for the development of HCC in the fatty liver under inflammatory and fibrotic conditions. The early diagnosis of liver cancer predicts curative treatment and longer survival. However, clinical HCC cases are commonly found in a very late stage due to the asymptomatic nature of the early stage of NAFLD-related HCC. The development of diagnostic methods and novel biomarkers, as well as the combined evaluation algorithm and artificial intelligence, support the early and precise diagnosis of NAFLD-related HCC, and timely monitoring during its progression. Treatment options for HCC and NAFLD-related HCC include immunotherapy, CAR T cell therapy, peptide treatment, bariatric surgery, anti-fibrotic treatment, and so on. Overall, the incidence of NAFLD-related HCC is increasing, and a better understanding of the underlying mechanism implicated in the progression of NAFLD-related HCC is essential for improving treatment and prognosis.


Sign in / Sign up

Export Citation Format

Share Document