scholarly journals Knockdown of circ-FURIN suppresses the proliferation and induces apoptosis of granular cells in polycystic ovary syndrome via miR-195-5p/BCL2 axis

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Yongqian Chen ◽  
Jintian Miao ◽  
Ge Lou

Abstract Background Polycystic ovary syndrome (PCOS) is an endocrine disease that increases the risk of infertility. Circular RNAs (circRNAs) play important roles in regulating the biological processes of PCOS. Our study was designed to explore the function of circ-FURIN in PCOS. Methods Circ-FURIN expression was detected using RT-qPCR. The protein expression of AVEN, BCL2, XIAP and AREL1 was measured using western blot. Dual-luciferase reporter and RNA pull-down assays were applied to clarify the interaction between miR-195-5p and circ-FURIN or BCL2. Functionally, cell proliferation was assessed by MTT and colony formation assays. Cell apoptosis was analyzed by flow cytometry. Results Circ-FURIN was upregulated in PCOS patients and granular cells (GCs). Knockdown of circ-FURIN inhibited cell proliferation and promoted apoptosis of KGN cells, along with the increased expression of caspase-3 and Bax and the decreased levels of p-PI3K. Gene ontology (GO) analysis indicated circ-FURIN is associated with apoptotic signaling pathway and cell death. Subsequently, BCL2 expression was elevated in patients with PCOS and positively regulated by circ-FURIN. Furthermore, circ-FURIN was served as a sponge of miR-195-5p to directly target to BCL2. The levels of miR-195-5p were reduced in PCOS and KGN cells. Knockdown of circ-FURIN decreased the expression of BCL2, which was abolished by miR-195-5p inhibitor. At last, rescue experiments revealed that overexpression of BCL2 reversed the effects of circ-FURIN knockdown on cell proliferation and apoptosis of KGN cells. Conclusions Loss of circ-FURIN alleviated the development of PCOS via miR-195-5p/BCL2 axis. Circ-FURIN may be the novel biomarker for PCOS.

2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Yi-xuan Wu ◽  
Yan-shan Lin ◽  
Si-chen Li ◽  
Xi Yao ◽  
Mingwei Cheng ◽  
...  

Abstract Background Polycystic ovary syndrome (PCOS) is an endocrine-related follicular developmental disorder that affects 50 %-70 % of reproductive-aged women diagnosed with ovulation-related infertility. Abnormal proliferation and apoptosis of granulosa cells (GCs) are thought to be the critical factors leading to abnormal maturation of follicles. It has been shown that microRNAs (miRNAs) exert a significant influence in the pathogenesis of PCOS; however, the relationship between miRNA, PCOS, and GC apoptosis is not entirely understood. Methods To clarify the effect of miR-194 in PCOS, CCK-8, Ki67 staining, AO/EB, and flow cytometry assays were used to assess cell growth, proliferation, and apoptosis in KGN cells, which were artificially stimulated to overexpress miR-194. Luciferase reporter assays and rescue experiments were used to elucidate the mechanism underlying miR-194 in PCOS. Results miR-194 expression was significantly up-regulated in rat models of PCOS and the ovarian GCs of PCOS patients. miR-194 suppression promoted KGN cell growth and proliferation. miR-194 overexpression also induced cell apoptosis, while miR-194 downregulation had an opposite effect. Furthermore, up-regulating heparin-binding EGF-like growth factor (HB-EGF) expression rescued the pro-apoptotic effects of miR-194 upregulation on KGN cells. Conclusions miR-194 is increased in PCOS granulosa cell and may function as a novel biomarker and therapeutic target for KGN cells via HB-EGF regulation.


2019 ◽  
Vol 97 (5) ◽  
pp. 554-562 ◽  
Author(s):  
Xueqin Sun ◽  
Shan Su ◽  
Guoxiang Zhang ◽  
Hong Zhang ◽  
Xiaohui Yu

MicroRNA (miR)-204 is known to be associated with several different diseases. Polycystic ovary syndrome (PCOS) has the highest incidence rate among the endocrine disorders in females between the ages of 18 and 44. We aimed to illustrate the miR-204 function in PCOS. MiR-204 expression levels in tissue and cell were examined through RT-qPCR. Colony formation assay and MTT assay were applied to detect the cell viability. Flow cytometry was employed to examine the apoptosis and cell cycle in cells. RNA binding protein immunoprecipitation assay and luciferase reporter assay were provided to demonstrate the direct interaction between translationally controlled tumor protein (TPT1) and miR-204. The expression of miR-204 was declined in KGN cells and ovarian cortex tissues of PCOS patients. MiR-204 enhanced the colony formation capacity and cell proliferation in KGN cells. Cell cycle and apoptosis were also influenced by miR-204. Since miR-204 has direct interaction with TPT1, TPT1 overexpression suppressed the miR-204-induced apoptosis and cell cycle alteration in KGN cells. MiR-204 inhibits the cell viability and induces apoptosis and cell cycle arrest by directly interacting with TPT1, indicating a role of miR-204 to be a potential target in the PCOS patients.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Haijie Gao ◽  
Jinna Jiang ◽  
Yingying Shi ◽  
Jiying Chen ◽  
Lijian Zhao ◽  
...  

Abstract Background Long noncoding RNAs (lncRNAs) participate in the pathogenesis of various human diseases. This study aims to investigate the roles of lncRNA LINC00477 in polycystic ovary syndrome (PCOS), especially the impacts of LINC00477 on the proliferation and migration of human granulosa cells and the related mechanisms. Methods qRT-PCR analysis was performed to examine the expression pattern of LINC00477 in serum samples of PCOS patients as well as PCOS animal models. The effect of LINC00477 on the viability and apoptosis of ovarian granulosa cells was detected by MTT and flow cytometry assays. The correlation between LINC00477 and miR-128 was verified by bioinformatics analysis and dual-luciferase reporter and RNA pull-down assays. Finally, rescue assays were performed to analyze the effects of the LINC00477-miR-128 axis on the biological behaviors of granulosa cells. Results LINC00477 was significantly upregulated in the serum of PCOS patients as well as PCOS mouse models. LINC00477 overexpression inhibited the proliferation and promoted the apoptosis of granulosa cells, whereas knockdown of LINC00477 yielded the opposite effects. Moreover, miR-128 mimics partially abrogated the effect of LINC00477 on granulosa cells. Conclusion LINC00477 may function as a ceRNA to inhibit proliferation and apoptosis of granulosa cells by modulating miR-128 expression.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Fang Hou ◽  
Jie Li ◽  
Jie Peng ◽  
Zhenghua Teng ◽  
Jun Feng ◽  
...  

Abstract Background TMPO-AS1 is a recently characterized oncogenic lncRNA in ovarian cancer. Its role in other ovary diseases is unknown. This study explored its role in polycystic ovary syndrome (PCOS). Methods Follicular fluid was extracted from both PCOS patients and controls. The levels of TMPO-AS1 and mature and premature miR-335-5p were analyzed by RT-qPCR. The role of TMPO-AS1 in regulating miR-355-5p maturation in granulosa-like tumor (KGN) cells was analyzed by overexpression experiments. The interaction between TMPO-AS1 and premature miR-335-5p was analyzed by RNA pull-down assay. The subcellular location of TMPO-AS1 in KGN cells was analyzed by nuclear fractionation assay. The role of TMPO-AS1 and miR-335-5p in KGN cell proliferation was analyzed by BrdU assay. Results TMPO-AS1 was increased in PCOS, while mature miR-355-5p was decreased in PCOS. TMPO-AS1 overexpression decreased mature miR-355-5p level but increased premature miR-355-5p. TMPO-AS1 was localized in both nucleus and cytoplasm. TMPO-AS1 directly interacted with premature miR-355-5p in KGN cells. TMPO-AS1 increased KGN cell proliferation while miR-355-5p decreased cell proliferation. The co-transfection assay showed that TMPO-AS1 reduced the suppressive effects of miR-355-5p on cell proliferation. Conclusions TMPO-AS1 might suppress miR-335-5p maturation to participate in PCOS.


2019 ◽  
Vol 25 (10) ◽  
pp. 638-646 ◽  
Author(s):  
Yan Li ◽  
Yungai Xiang ◽  
Yuxia Song ◽  
Lijing Wan ◽  
Guo Yu ◽  
...  

Abstract It is well established that microRNA (miRNA) expression profiles are altered in patients with polycystic ovary syndrome (PCOS). In addition, abnormal transforming growth factor beta (TGFB) signaling in granulosa cells is related to the pathological conditions of PCOS. However, the function of dysregulated miRNAs in PCOS is still unclear. In this study, we aimed to elucidate the roles of specific miRNAs in PCOS. We collected follicular fluid from 46 patients with PCOS and 32 healthy controls. Granulosa cells (GCs) were separated and the levels of six candidate miRNAs were determined by quantitative RT-PCR. The direct targets of three dysregulated miRNAs were predicted using bioinformatic tools and confirmed using a dual luciferase assay and immunoblotting. The biological function of three dysregulated miRNAs in primary GCs was determined using a cell proliferation assay and flow cytometry. We found that miR-423 expression was downregulated (P = 0.038), and the levels of miR-33b (P = 0.032) and miR-142 (P = 0.021) were upregulated in GCs from patients with PCOS, compared to controls. miR-423 directly repressed SMAD family member 7 (SMAD7) expression, while transforming growth factor beta receptor 1 (TGFBR1) was a direct target of both miR-33b and miR-142. An RNA oligonucleotide mixture containing miR-423 inhibitor, miR-33b mimic, and miR-142 mimic repressed TGFB signaling, promoted cell proliferation (P = 0.0098), repressed apoptosis (P = 0.027), and increased S phase cell numbers (P = 0.0036) in primary cultures of GCs, compared to the cells treated with a sequence scrambled control RNA oligonucleotide. This study unveiled the possible roles of three miRNAs in PCOS and might provide candidate biomarkers for PCOS diagnosis while in vivo functional studies, using transgenic or knockout mouse models, are expected to confirm the roles of dysregulated miRNAs in the pathogenesis of PCOS.


Sign in / Sign up

Export Citation Format

Share Document