scholarly journals Sunitinib facilitates metastatic breast cancer spreading by inducing endothelial cell senescence

2020 ◽  
Vol 22 (1) ◽  
Author(s):  
Denian Wang ◽  
Fei Xiao ◽  
Zhongxue Feng ◽  
Min Li ◽  
Lingmiao Kong ◽  
...  

Abstract Background Sunitinib, a receptor tyrosine kinase (RTK) inhibitor that targets multiple receptors such as vascular endothelial growth factor receptors (VEGFRs), was approved for cancer treatment in 2006. However, it was unsuccessful in treating certain cancers, particularly metastatic breast cancer (MBC), and the mechanism underlying this “sunitinib resistance” remains unclear. Herein, we investigated whether the sunitinib-associated inferior survival benefit in MBC was due to sunitinib-induced endothelial cell (EC) injury or EC senescence. Methods 4T1 murine breast cancer cells were used as the main breast tumor model for it produces a highly metastatic solid tumor that can spontaneously metastasize to the lung, which closely mimics highly metastatic human breast cancer. Senescence-associated β-galactosidase (SA-β-Gal, immunohistochemistry [IHC]-staining), P16, P53, and P57 (immunoblotting) were used as markers of cell senescence. A protein array containing 25 senescence-associated chemokines and the transwell chemotaxis assay were used to examine whether sunitinib increases inflammatory chemokine secretion which attracts tumor cells via chemokinesis. Flow cytometry and IHC were used to detect whether the sunitinib-induced senescent ECs recruit cancer-associated inflammatory myeloid cells. Finally, the spontaneous metastatic model was used to monitor whether sunitinib causes the formation of “pre-metastatic niche” which promotes MBC to metastasize to the lungs. Results We demonstrated that sunitinib induced a senescence-like endothelial cell (EC) phenotype. Inflammatory chemokine secretion and VCAM1 expression were significantly increased in senescent ECs, resulting in tumor cell (TC) chemotaxis and TC/EC interactions. Meanwhile, EC senescence caused loosening of EC junctions, facilitating TC transmigration through the endothelial barrier. Sunitinib-induced senescent ECs also recruited cancer-associated myeloid cells to form a “pre-metastatic niche”-like microenvironment. Alterations at the molecular level and in the tissue environment ultimately led to an increase in distant metastasis. Conclusion Although sunitinib was designed to target the EC directly, the increase in tumor metastasis may ironically be due to sunitinib “correctly” playing its role. Our findings suggest that we should carefully weigh the pros and cons before using sunitinib and other antiangiogenic drugs that directly target the ECs.

2013 ◽  
Vol 19 (3) ◽  
pp. 452-459 ◽  
Author(s):  
Wakako Tsuji ◽  
Hiroshi Ishiguro ◽  
Sunao Tanaka ◽  
Megumi Takeuchi ◽  
Takayuki Ueno ◽  
...  

2019 ◽  
Vol 21 (1) ◽  
pp. 170 ◽  
Author(s):  
József Á. Balog ◽  
László Hackler Jr. ◽  
Anita K. Kovács ◽  
Patrícia Neuperger ◽  
Róbert Alföldi ◽  
...  

The treatment of metastatic breast cancer remained a challenge despite the recent breakthrough in the immunotherapy regimens. Here, we addressed the multidimensional immunophenotyping of 4T1 metastatic breast cancer by the state-of-the-art single cell mass cytometry (CyTOF). We determined the dose and time dependent cytotoxicity of cisplatin on 4T1 cells by the xCelligence real-time electronic sensing assay. Cisplatin treatment reduced tumor growth, number of lung metastasis, and the splenomegaly of 4T1 tumor bearing mice. We showed that cisplatin inhibited the tumor stroma formation, the polarization of carcinoma-associated fibroblasts by the diminished proteolytic activity of fibroblast activating protein. The CyTOF analysis revealed the emergence of CD11b+/Gr-1+/CD44+ or CD11b+/Gr-1+/IL-17A+ myeloid-derived suppressor cells (MDSCs) and the absence of B220+ or CD62L+ B-cells, the CD62L+/CD4+ and CD62L+/CD8+ T-cells in the spleen of advanced cancer. We could show the immunomodulatory effect of cisplatin via the suppression of splenic MDSCs and via the promotion of peripheral IFN-γ+ myeloid cells. Our data could support the use of low dose chemotherapy with cisplatin as an immunomodulatory agent for metastatic triple negative breast cancer.


2019 ◽  
Vol 9 (3) ◽  
pp. 445-452 ◽  
Author(s):  
Edy Meiyanto ◽  
Herwandhani Putri ◽  
Yonika Arum Larasati ◽  
Rohmad Yudi Utomo ◽  
Riris Istighfari Jenie ◽  
...  

Purpose: Pentagamavunon-1 (PGV-1) is a curcumin analogue that shows cytotoxic activity in various cancer cells. In this study, we evaluated the effect of PGV-1 on a highly metastatic breast cancer cell line, the 4T1 cells, as an anti-metastatic and anti-proliferative agent. Methods: Cell viability was evaluated using MTT assay; while cell cycle profile, apoptosis incidence, and ROS intracellular level were determined by flow cytometry. Cell senescence was observed under senescence-associated-β-galactosidase (SA-β-gal) staining assay. The expression of matrixmetalloproteinase-9 (MMP-9) was determined using immunoreaction based-ELISA, while other proteins expression were detected using immunoblotting. Results: Curcumin and PGV-1 showed cytotoxic effects on 4T1 cells with IC50 value of 50 and 4 µM, respectively. The cytotoxic activity of PGV-1 was correlated to the induction of G2/M cell cycle arrest and cell senescence. Furthermore, PGV-1 increased the accumulation of intracellular ROS level. We also revealed that PGV-1 bound to several ROS-metabolizing enzymes, including glyoxalase I (GLO1), peroxiredoxin 1 (PRDX1), N-ribosyldihydronicotinamide: quinone reductase 2 (NQO2), aldo-keto reductase family 1 member c1 (AKR1C1). As an antimetastatic agent, PGV-1 showed less inhibitory effect on cell migration compared to curcumin. However, PGV-1 significantly decreased MMP-9 protein expression in a dose-dependent manner suggesting it still potent to inhibit metastatic cells. Conclusion: Overall, our findings suggest that PGV-1 is potential to be developed as an antiproliferative and anti-metastatic agent.


Sign in / Sign up

Export Citation Format

Share Document