scholarly journals scATAC-pro: a comprehensive workbench for single-cell chromatin accessibility sequencing data

2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Wenbao Yu ◽  
Yasin Uzun ◽  
Qin Zhu ◽  
Changya Chen ◽  
Kai Tan
2022 ◽  
Vol 23 (1) ◽  
Author(s):  
Gaoyang Li ◽  
Shaliu Fu ◽  
Shuguang Wang ◽  
Chenyu Zhu ◽  
Bin Duan ◽  
...  

AbstractHere, we present a multi-modal deep generative model, the single-cell Multi-View Profiler (scMVP), which is designed for handling sequencing data that simultaneously measure gene expression and chromatin accessibility in the same cell, including SNARE-seq, sci-CAR, Paired-seq, SHARE-seq, and Multiome from 10X Genomics. scMVP generates common latent representations for dimensionality reduction, cell clustering, and developmental trajectory inference and generates separate imputations for differential analysis and cis-regulatory element identification. scMVP can help mitigate data sparsity issues with imputation and accurately identify cell groups for different joint profiling techniques with common latent embedding, and we demonstrate its advantages on several realistic datasets.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Boying Gong ◽  
Yun Zhou ◽  
Elizabeth Purdom

AbstractA growing number of single-cell sequencing platforms enable joint profiling of multiple omics from the same cells. We present , a novel method that not only allows for analyzing the data from joint-modality platforms, but provides a coherent framework for the integration of multiple datasets measured on different modalities. We demonstrate its performance on multi-modality data of gene expression and chromatin accessibility and illustrate the integration abilities of by jointly analyzing this multi-modality data with single-cell RNA-seq and ATAC-seq datasets.


2021 ◽  
Author(s):  
Boying Gong ◽  
Yun Zhou ◽  
Elizabeth Purdom

AbstractSingle-cell measurements of different cellular features or modalities from cells from the same system allow for a comprehensive understanding of a biological process. While the most common single-cell sequencing technologies require separate input cells for different modalities, there are a growing number of platforms that allow for measuring several modalities on a single cell. We present a novel method, Cobolt, for analyzing such multi-modality single-cell sequencing datasets. Cobolt jointly models the multiple modalities via a novel application of Multimodal Variational Autoencoder (MVAE) to a hierarchical generative model. We first demonstrate its performance on data from the multi-modality platform SNARE-seq, consisting of measurements of gene expression and chromatin accessibility on the same cells. We then illustrate the ability of Cobolt to integrate multi-modality platforms with single-modality platforms by jointly analyzing a SNARE-seq dataset, a single-cell gene expression dataset, and a single-cell chromatin accessibility dataset. We compared Cobolt with current options for analyzing such datasets and show that Cobolt provides robust and flexible results for integration of single-cell data on multiple modalities.


2019 ◽  
Author(s):  
Wenbao Yu ◽  
Yasin Uzun ◽  
Qin Zhu ◽  
Changya Chen ◽  
Kai Tan

AbstractSingle cell chromatin accessibility sequencing (scCAS) has become a powerful technology for understanding epigenetic heterogeneity of complex tissues. The development of several experimental protocols has led to a rapid accumulation of scCAS data. In contrast, there is a lack of open-source software tools for comprehensive processing, analysis and visualization of scCAS data generated using all existing experimental protocols. Here we present scATAC-pro for quality assessment, analysis and visualization of scCAS data. scATAC-pro provides flexible choice of methods for different data processing and analytical tasks, with carefully curated default parameters. A range of quality control metrics are computed for several key steps of the experimental protocol. scATAC-pro generates summary reports for both quality assessment and downstream analysis. It also provides additional utility functions for generating input files for various types of downstream analyses and data visualization. With the rapid accumulation of scCAS data, scATAC-pro will facilitate studies of epigenomic heterogeneity in healthy and diseased tissues.


2021 ◽  
Author(s):  
Shengen Shawn Hu ◽  
Lin Liu ◽  
Qi Li ◽  
Wenjing Ma ◽  
Michael J Guertin ◽  
...  

Genome-wide profiling of chromatin accessibility by DNase-seq or ATAC-seq has been widely used to identify regulatory DNA elements and transcription factor binding sites. However, enzymatic DNA cleavage exhibits intrinsic sequence biases that confound chromatin accessibility profiling data analysis. Existing computational tools are limited in their ability to account for such intrinsic biases. Here, we present Simplex Encoded Linear Model for Accessible Chromatin (SELMA), a computational method for systematic estimation of intrinsic cleavage biases from genomic chromatin accessibility profiling data. We demonstrate that SELMA yields accurate and robust bias estimation from both bulk and single-cell DNase-seq and ATAC-seq data. We show that transcription factor binding inference from DNase footprints can be improved by incorporating estimated biases using SELMA. We also demonstrate improved cell clustering of single-cell ATAC-seq data by considering the SELMA-estimated bias effect. SELMA can be applied to existing bioinformatics tools to improve the analysis of chromatin accessibility sequencing data.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Leah L. Weber ◽  
Mohammed El-Kebir

Abstract Background Cancer arises from an evolutionary process where somatic mutations give rise to clonal expansions. Reconstructing this evolutionary process is useful for treatment decision-making as well as understanding evolutionary patterns across patients and cancer types. In particular, classifying a tumor’s evolutionary process as either linear or branched and understanding what cancer types and which patients have each of these trajectories could provide useful insights for both clinicians and researchers. While comprehensive cancer phylogeny inference from single-cell DNA sequencing data is challenging due to limitations with current sequencing technology and the complexity of the resulting problem, current data might provide sufficient signal to accurately classify a tumor’s evolutionary history as either linear or branched. Results We introduce the Linear Perfect Phylogeny Flipping (LPPF) problem as a means of testing two alternative hypotheses for the pattern of evolution, which we prove to be NP-hard. We develop Phyolin, which uses constraint programming to solve the LPPF problem. Through both in silico experiments and real data application, we demonstrate the performance of our method, outperforming a competing machine learning approach. Conclusion Phyolin is an accurate, easy to use and fast method for classifying an evolutionary trajectory as linear or branched given a tumor’s single-cell DNA sequencing data.


Author(s):  
Noa Liscovitch-Brauer ◽  
Antonino Montalbano ◽  
Jiale Deng ◽  
Alejandro Méndez-Mancilla ◽  
Hans-Hermann Wessels ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Sarah E. Pierce ◽  
Jeffrey M. Granja ◽  
William J. Greenleaf

AbstractChromatin accessibility profiling can identify putative regulatory regions genome wide; however, pooled single-cell methods for assessing the effects of regulatory perturbations on accessibility are limited. Here, we report a modified droplet-based single-cell ATAC-seq protocol for perturbing and evaluating dynamic single-cell epigenetic states. This method (Spear-ATAC) enables simultaneous read-out of chromatin accessibility profiles and integrated sgRNA spacer sequences from thousands of individual cells at once. Spear-ATAC profiling of 104,592 cells representing 414 sgRNA knock-down populations reveals the temporal dynamics of epigenetic responses to regulatory perturbations in cancer cells and the associations between transcription factor binding profiles.


2021 ◽  
Vol 23 (1) ◽  
Author(s):  
Bhupinder Pal ◽  
Yunshun Chen ◽  
Michael J. G. Milevskiy ◽  
François Vaillant ◽  
Lexie Prokopuk ◽  
...  

Abstract Background Heterogeneity within the mouse mammary epithelium and potential lineage relationships have been recently explored by single-cell RNA profiling. To further understand how cellular diversity changes during mammary ontogeny, we profiled single cells from nine different developmental stages spanning late embryogenesis, early postnatal, prepuberty, adult, mid-pregnancy, late-pregnancy, and post-involution, as well as the transcriptomes of micro-dissected terminal end buds (TEBs) and subtending ducts during puberty. Methods The single cell transcriptomes of 132,599 mammary epithelial cells from 9 different developmental stages were determined on the 10x Genomics Chromium platform, and integrative analyses were performed to compare specific time points. Results The mammary rudiment at E18.5 closely aligned with the basal lineage, while prepubertal epithelial cells exhibited lineage segregation but to a less differentiated state than their adult counterparts. Comparison of micro-dissected TEBs versus ducts showed that luminal cells within TEBs harbored intermediate expression profiles. Ductal basal cells exhibited increased chromatin accessibility of luminal genes compared to their TEB counterparts suggesting that lineage-specific chromatin is established within the subtending ducts during puberty. An integrative analysis of five stages spanning the pregnancy cycle revealed distinct stage-specific profiles and the presence of cycling basal, mixed-lineage, and 'late' alveolar intermediates in pregnancy. Moreover, a number of intermediates were uncovered along the basal-luminal progenitor cell axis, suggesting a continuum of alveolar-restricted progenitor states. Conclusions This extended single cell transcriptome atlas of mouse mammary epithelial cells provides the most complete coverage for mammary epithelial cells during morphogenesis to date. Together with chromatin accessibility analysis of TEB structures, it represents a valuable framework for understanding developmental decisions within the mouse mammary gland.


Sign in / Sign up

Export Citation Format

Share Document