scholarly journals Single cell transcriptome atlas of mouse mammary epithelial cells across development

2021 ◽  
Vol 23 (1) ◽  
Author(s):  
Bhupinder Pal ◽  
Yunshun Chen ◽  
Michael J. G. Milevskiy ◽  
François Vaillant ◽  
Lexie Prokopuk ◽  
...  

Abstract Background Heterogeneity within the mouse mammary epithelium and potential lineage relationships have been recently explored by single-cell RNA profiling. To further understand how cellular diversity changes during mammary ontogeny, we profiled single cells from nine different developmental stages spanning late embryogenesis, early postnatal, prepuberty, adult, mid-pregnancy, late-pregnancy, and post-involution, as well as the transcriptomes of micro-dissected terminal end buds (TEBs) and subtending ducts during puberty. Methods The single cell transcriptomes of 132,599 mammary epithelial cells from 9 different developmental stages were determined on the 10x Genomics Chromium platform, and integrative analyses were performed to compare specific time points. Results The mammary rudiment at E18.5 closely aligned with the basal lineage, while prepubertal epithelial cells exhibited lineage segregation but to a less differentiated state than their adult counterparts. Comparison of micro-dissected TEBs versus ducts showed that luminal cells within TEBs harbored intermediate expression profiles. Ductal basal cells exhibited increased chromatin accessibility of luminal genes compared to their TEB counterparts suggesting that lineage-specific chromatin is established within the subtending ducts during puberty. An integrative analysis of five stages spanning the pregnancy cycle revealed distinct stage-specific profiles and the presence of cycling basal, mixed-lineage, and 'late' alveolar intermediates in pregnancy. Moreover, a number of intermediates were uncovered along the basal-luminal progenitor cell axis, suggesting a continuum of alveolar-restricted progenitor states. Conclusions This extended single cell transcriptome atlas of mouse mammary epithelial cells provides the most complete coverage for mammary epithelial cells during morphogenesis to date. Together with chromatin accessibility analysis of TEB structures, it represents a valuable framework for understanding developmental decisions within the mouse mammary gland.

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Doreen Becker ◽  
Rosemarie Weikard ◽  
Frieder Hadlich ◽  
Christa Kühn

AbstractBovine mammary function at molecular level is often studied using mammary tissue or primary bovine mammary epithelial cells (pbMECs). However, bulk tissue and primary cells are heterogeneous with respect to cell populations, adding further transcriptional variation in addition to genetic background. Thus, understanding of the variation in gene expression profiles of cell populations and their effect on function are limited. To investigate the mononuclear cell composition in bovine milk, we analyzed a single-cell suspension from a milk sample. Additionally, we harvested cultured pbMECs to characterize gene expression in a homogeneous cell population. Using the Drop-seq technology, we generated single-cell RNA datasets of somatic milk cells and pbMECs. The final datasets after quality control filtering contained 7,119 and 10,549 cells, respectively. The pbMECs formed 14 indefinite clusters displaying intrapopulation heterogeneity, whereas the milk cells formed 14 more distinct clusters. Our datasets constitute a molecular cell atlas that provides a basis for future studies of milk cell composition and gene expression, and could serve as reference datasets for milk cell analysis.


2020 ◽  
Vol 6 (37) ◽  
pp. eaba1190
Author(s):  
Q. R. Xing ◽  
C. A. El Farran ◽  
P. Gautam ◽  
Y. S. Chuah ◽  
T. Warrier ◽  
...  

Cellular reprogramming suffers from low efficiency especially for the human cells. To deconstruct the heterogeneity and unravel the mechanisms for successful reprogramming, we adopted single-cell RNA sequencing (scRNA-Seq) and single-cell assay for transposase-accessible chromatin (scATAC-Seq) to profile reprogramming cells across various time points. Our analysis revealed that reprogramming cells proceed in an asynchronous trajectory and diversify into heterogeneous subpopulations. We identified fluorescent probes and surface markers to enrich for the early reprogrammed human cells. Furthermore, combinatory usage of the surface markers enabled the fine segregation of the early-intermediate cells with diverse reprogramming propensities. scATAC-Seq analysis further uncovered the genomic partitions and transcription factors responsible for the regulatory phasing of reprogramming process. Binary choice between a FOSL1 and a TEAD4-centric regulatory network determines the outcome of a successful reprogramming. Together, our study illuminates the multitude of diverse routes transversed by individual reprogramming cells and presents an integrative roadmap for identifying the mechanistic part list of the reprogramming machinery.


2021 ◽  
Author(s):  
Sanshiro Kanazawa ◽  
Hironori Hojo ◽  
Shinsuke Ohba ◽  
Junichi Iwata ◽  
Makoto Komura ◽  
...  

Abstract Although multiple studies have investigated the mesenchymal stem and progenitor cells (MSCs) that give rise to mature bone marrow, high heterogeneity in their morphologies and properties causes difficulties in molecular separation of their distinct populations. In this study, by taking advantage of the resolution of the single cell transcriptome, we analyzed Sca-1 and PDGFR-α fraction in the mouse bone marrow tissue. The single cell transcriptome enabled us to further classify the population into seven populations according to their gene expression profiles. We then separately obtained the seven populations based on candidate marker genes, and specified their gene expression properties and epigenetic landscape by ATAC-seq. Our findings will enable to elucidate the stem cell niche signal in the bone marrow microenvironment, reconstitute bone marrow in vitro, and shed light on the potentially important role of identified subpopulation in various clinical applications to the treatment of bone- and bone marrow-related diseases.


2018 ◽  
Author(s):  
Zhe Sun ◽  
Li Chen ◽  
Hongyi Xin ◽  
Qianhui Huang ◽  
Anthony R Cillo ◽  
...  

AbstractThe recently developed droplet-based single cell transcriptome sequencing (scRNA-seq) technology makes it feasible to perform a population-scale scRNA-seq study, in which the transcriptome is measured for tens of thousands of single cells from multiple individuals. Despite the advances of many clustering methods, there are few tailored methods for population-scale scRNA-seq studies. Here, we have developed a BAyesiany Mixture Model for Single Cell sequencing (BAMM-SC) method to cluster scRNA-seq data from multiple individuals simultaneously. Specifically, BAMM-SC takes raw data as input and can account for data heterogeneity and batch effect among multiple individuals in a unified Bayesian hierarchical model framework. Results from extensive simulations and application of BAMM-SC to in-house scRNA-seq datasets using blood, lung and skin cells from humans or mice demonstrated that BAMM-SC outperformed existing clustering methods with improved clustering accuracy and reduced impact from batch effects. BAMM-SC has been implemented in a user-friendly R package with a detailed tutorial available on www.pitt.edu/~Cwec47/singlecell.html.


2021 ◽  
Author(s):  
Peter Fabian ◽  
Kuo-Chang Tseng ◽  
Mathi Thiruppathy ◽  
Claire Arata ◽  
Hung-Jhen Chen ◽  
...  

AbstractThe cranial neural crest generates a huge diversity of derivatives, including the bulk of connective and skeletal tissues of the vertebrate head. How neural crest cells acquire such extraordinary lineage potential remains unresolved. By integrating single-cell transcriptome and chromatin accessibility profiles of cranial neural crest-derived cells across the zebrafish lifetime, we observe region-specific establishment of enhancer accessibility for distinct fates. Neural crest-derived cells rapidly diversify into specialized progenitors, including multipotent skeletal progenitors, stromal cells with a regenerative signature, fibroblasts with a unique metabolic signature linked to skeletal integrity, and gill-specific progenitors generating cell types for respiration. By retrogradely mapping the emergence of lineage-specific chromatin accessibility, we identify a wealth of candidate lineage-priming factors, including a Gata3 regulatory circuit for respiratory cell fates. Rather than multilineage potential being an intrinsic property of cranial neural crest, our findings support progressive and region-specific chromatin remodeling underlying acquisition of diverse neural crest lineage potential.HighlightsSingle-cell transcriptome and chromatin atlas of cranial neural crestProgressive emergence of region-specific cell fate competencyChromatin accessibility mapping identifies candidate lineage regulatorsGata3 function linked to gill-specific respiratory programGraphical Abstract


1999 ◽  
Vol 112 (11) ◽  
pp. 1771-1783 ◽  
Author(s):  
A.D. Metcalfe ◽  
A. Gilmore ◽  
T. Klinowska ◽  
J. Oliver ◽  
A.J. Valentijn ◽  
...  

Epithelial cells within the mammary gland undergo developmental programmes of proliferation and apoptosis during the pregnancy cycle. After weaning, secretory epithelial cells are removed by apoptosis. To determine whether members of the Bcl-2 gene family could be involved in regulating this process, we have examined whether changes in their expression occur during this developmental apoptotic program in vivo. Bax and Bcl-x were evenly expressed throughout development. However, expression of Bak and Bad was increased during late pregnancy and lactation, and the proteins were present during the time of maximal apoptotic involution. Thereafter, their levels declined. In contrast, Bcl-w was expressed in pregnancy and lactation but was downregulated at the onset of apoptosis. Bcl-2 was not detected in lactating or early involuting mammary gland. Thus, the pro-apoptotic proteins Bax, Bak and Bad, as well as the death-suppressors Bcl-x, Bcl-2 and Bcl-w, are synthesised in mouse mammary gland, and dynamic changes in the expression profiles of these proteins occurs during development. To determine if changes in Bak and Bcl-w expression could regulate mammary apoptosis, their effect on cultured mouse mammary epithelial cells was examined in transient transfection assays. Enforced expression of Bak induced rapid mammary apoptosis, which could be suppressed by coexpression of Bcl-w. In extracts of mammary tissue in vivo, Bak heterodimerized with Bcl-x whereas Bax associated with Bcl-w, but Bak/Bcl-w heterodimers were not detected. Thus, Bak and Bcl-w may regulate cell death through independent pathways. These results support a model in which mammary epithelial cells are primed for apoptosis during the transition from pregnancy to lactation by de novo expression of the death effectors Bak and Bad. It is suggested that these proteins are prevented from triggering apoptosis by anti-apoptotic Bcl-2 family proteins until involution, when the levels of Bcl-w decline. Our study provides evidence that regulated changes in the expression of cell death genes may contribute to the developmental control of mammary apoptosis.


2021 ◽  
Author(s):  
Fredrik Salmen ◽  
Joachim De Jonghe ◽  
Tomasz S. Kaminski ◽  
Anna Alemany ◽  
Guillermo Parada ◽  
...  

In recent years, single-cell transcriptome sequencing has revolutionized biology, allowing for the unbiased characterization of cellular subpopulations. However, most methods amplify the termini of polyadenylated transcripts capturing only a small fraction of the total cellular transcriptome. This precludes the detection of many long non-coding, short non-coding and non-polyadenylated protein-coding transcripts. Additionally, most workflows do not sequence the full transcript hindering the analysis of alternative splicing. We therefore developed VASA- seq to detect the total transcriptome in single cells. VASA-seq is compatible with both plate- based formats and droplet microfluidics. We applied VASA-seq to over 30,000 single cells in the developing mouse embryo during gastrulation and early organogenesis. The dynamics of the total single-cell transcriptome result in the discovery of novel cell type markers many based on non-coding RNA, an in vivo cell cycle analysis and an improved RNA velocity characterization. Moreover, it provides the first comprehensive analysis of alternative splicing during mammalian development.


Sign in / Sign up

Export Citation Format

Share Document