scholarly journals Evaluation of the efficacy and safety of inhaled magnesium sulphate in combination with standard treatment in patients with moderate or severe COVID-19: A structured summary of a study protocol for a randomised controlled trial

Trials ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Guitti Pourdowlat ◽  
Seyed Ruhollah Mousavinasab ◽  
Behrooz Farzanegan ◽  
Alireza Kashefizadeh ◽  
Zohreh Akhoundi Meybodi ◽  
...  

Abstract Objectives Basic and clinical studies have shown that magnesium sulphate ameliorates lung injury and controls asthma attacks by anti-inflammatory and bronchodilatory effects. Both intravenous and inhaled magnesium sulphate have a clinical impact on acute severe asthma by inhibition of airway smooth muscle contraction. Besides, magnesium sulphate can dilate constricted pulmonary arteries and reduce pulmonary artery resistance. However, it may affect systemic arteries when administered intravenously. A large number of patients with covid-19 admitted to the hospital suffer from pulmonary involvement. COVID-19 can cause hypoxia due to the involvement of the respiratory airways and parenchyma along with circulatory impairment, which induce ventilation-perfusion mismatch. This condition may result in hypoxemia and low arterial blood oxygen pressure and saturation presented with some degree of dyspnoea and shortness of breath. Inhaled magnesium sulphate as a smooth muscle relaxant (natural calcium antagonist) can cause both bronchodilator and consequently vasodilator effects (via a direct effect on alveolar arterioles in well-ventilated areas) in the respiratory tract. We aim to investigate if inhaled magnesium sulphate as adjuvant therapy to standard treatment can reduce ventilation-perfusion mismatch in the respiratory tract and subsequently improve arterial oxygen saturation in hospitalized patients with COVID-19. Trial design A multi-centre, open-label, randomised controlled trial (RCT) with two parallel arms design (1:1 ratio) Participants Patients aged 18-80 years hospitalized at Masih Daneshvari Hospital and Shahid Dr. Labbafinejad hospital in Tehran and Shahid Sadoughi Hospital in Yazd will be included if they meet the inclusion criteria of the study. Inclusion criteria are defined as 1. Confirmed diagnosis of SARS-CoV-2 infection based on polymerase chain reaction (PCR) of nasopharyngeal secretions or clinical manifestations along with chest computed tomography (chest CT) scan 2. Presenting with moderate or severe COVID-19 lung involvement confirmed with chest CT scan and arterial oxygen saturation below 93% 3. Length of hospital stay ≤48 hours. Patients with underlying cardiovascular diseases including congestive heart failure, bradyarrhythmia, heart block, the myocardial injury will be excluded from the study. Intervention and comparator Participants will be randomly divided into two arms. Patients in the intervention arm will be given both standard treatment for COVID-19 (according to the national guideline) and magnesium sulphate (5 cc of a 20% injectable vial or 2 cc of a 50% injectable vial will be diluted by 50 cc distilled water and nebulized via a mask) every eight hours for five days. Patients in the control (comparator) arm will only receive standard treatment for COVID-19. Main outcomes Improvement of respiratory function and symptoms including arterial blood oxygen saturation, dyspnoea (according to NYHA functional classification), and cough within the first five days of randomization. Randomisation Block randomisation will be used to allocate eligible patients to the study arms (in a 1:1 ratio). Computer software will be applied to randomly select the blocks. Blinding (masking) The study is an open-label RCT without blinding. Numbers to be randomised (sample size) The trial will be performed on 100 patients who will be randomly divided into two arms of control (50) and intervention (50). Trial Status The protocol is Version 5.0, January 05, 2021. Recruitment of the participants started on July 30, 2020, and it is anticipated to be completed by February 28, 2021. Trial registration The trial was registered in the Iranian Registry of Clinical Trials (IRCT) on July 28, 2020. It is available on https://en.irct.ir/trial/49879. The registration number is IRCT20191211045691N1. Full protocol The full protocol is attached as an additional file, accessible from the Trials website (Additional file 1). In the interest of expediting the dissemination of this material, the familiar formatting has been eliminated; this Letter serves as a summary of the key elements of the full protocol.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shinshu Katayama ◽  
Jun Shima ◽  
Ken Tonai ◽  
Kansuke Koyama ◽  
Shin Nunomiya

AbstractRecently, maintaining a certain oxygen saturation measured by pulse oximetry (SpO2) range in mechanically ventilated patients was recommended; attaching the INTELLiVENT-ASV to ventilators might be beneficial. We evaluated the SpO2 measurement accuracy of a Nihon Kohden and a Masimo monitor compared to actual arterial oxygen saturation (SaO2). SpO2 was simultaneously measured by a Nihon Kohden and Masimo monitor in patients consecutively admitted to a general intensive care unit and mechanically ventilated. Bland–Altman plots were used to compare measured SpO2 with actual SaO2. One hundred mechanically ventilated patients and 1497 arterial blood gas results were reviewed. Mean SaO2 values, Nihon Kohden SpO2 measurements, and Masimo SpO2 measurements were 95.7%, 96.4%, and 96.9%, respectively. The Nihon Kohden SpO2 measurements were less biased than Masimo measurements; their precision was not significantly different. Nihon Kohden and Masimo SpO2 measurements were not significantly different in the “SaO2 < 94%” group (P = 0.083). In the “94% ≤ SaO2 < 98%” and “SaO2 ≥ 98%” groups, there were significant differences between the Nihon Kohden and Masimo SpO2 measurements (P < 0.0001; P = 0.006; respectively). Therefore, when using automatically controlling oxygenation with INTELLiVENT-ASV in mechanically ventilated patients, the Nihon Kohden SpO2 sensor is preferable.Trial registration UMIN000027671. Registered 7 June 2017.


1944 ◽  
Vol 79 (1) ◽  
pp. 9-22 ◽  
Author(s):  
Frank L. Engel ◽  
Helen C. Harrison ◽  
C. N. H. Long

1. In a series of rats subjected to hemorrhage and shock a high negative correlation was found between the portal and peripheral venous oxygen saturations and the arterial blood pressure on the one hand, and the blood amino nitrogen levels on the other, and a high positive correlation between the portal and the peripheral oxygen saturations and between each of these and the blood pressure. 2. In five cats subjected to hemorrhage and shock the rise in plasma amino nitrogen and the fall in peripheral and portal venous oxygen saturations were confirmed. Further it was shown that the hepatic vein oxygen saturation falls early in shock while the arterial oxygen saturation showed no alteration except terminally, when it may fall also. 3. Ligation of the hepatic artery in rats did not affect the liver's ability to deaminate amino acids. Hemorrhage in a series of hepatic artery ligated rats did not produce any greater rise in the blood amino nitrogen than a similar hemorrhage in normal rats. The hepatic artery probably cannot compensate to any degree for the decrease in portal blood flow in shock. 4. An operation was devised whereby the viscera and portal circulation of the rat were eliminated and the liver maintained only on its arterial circulation. The ability of such a liver to metabolize amino acids was found to be less than either the normal or the hepatic artery ligated liver and to have very little reserve. 5. On complete occlusion of the circulation to the rat liver this organ was found to resist anoxia up to 45 minutes. With further anoxia irreversible damage to this organ's ability to handle amino acids occurred. 6. It is concluded that the blood amino nitrogen rise during shock results from an increased breakdown of protein in the peripheral tissues, the products of which accumulate either because they do not circulate through the liver at a sufficiently rapid rate or because with continued anoxia intrinsic damage may occur to the hepatic parenchyma so that it cannot dispose of amino acids.


1964 ◽  
Vol 19 (2) ◽  
pp. 284-286 ◽  
Author(s):  
Loring B. Rowell ◽  
Henry L. Taylor ◽  
Yang Wang ◽  
Walter S. Carlson

The per cent saturation of the arterial blood with oxygen was examined in four men before and during the last 15 sec of a 3-min run of sufficient intensity to elicit a maximal oxygen intake. The measurements were repeated after a 3-month period of intensive conditioning for middle distance running and in a group of four athletes in good physical condition. The per cent saturation in the sedentary group was 95.8 at rest and 93.4 during exhausting exercise; after conditioning the similar figures were 95.4 and 91.4 and, finally, the athletes showed a per cent saturation of 85.2 during the heavy work. The arterial oxygen content during exhausting work was found to be 20.12 ml/100 ml blood in the sedentary group before training, 19.02 after conditioning, and 18.18 in the group of athletes. It is concluded that, in athletes who are well conditioned and pushing themselves close to the limit of their capacity, arterial desaturation can take place. athletic conditioning and arterial oxygen saturation; arterial desaturation in athletes; ventilation and arterial desaturation; oxygen intake and arterial oxygen saturation Submitted on August 5, 1963


PEDIATRICS ◽  
1992 ◽  
Vol 89 (1) ◽  
pp. 133-137 ◽  
Author(s):  
Lea Bentur ◽  
Gerard J. Canny ◽  
Michael D. Shields ◽  
Eitan Kerem ◽  
Joseph J. Reisman ◽  
...  

To determine the response to nebulized β2 agonist, 28 children younger than 2 years of age who visited the emergency department during an episode of acute asthma were studied. Each subject had a previous history of recurrent wheezing episodes. They were randomly assigned to receive two administrations of either nebulized albuterol (0.15 mg/kg per dose) or placebo (normal saline) with oxygen, 1 hour apart. After two nebulizations, the albuterol-treated patients had a greater improvement in clinical status (respiratory rate, degree of wheezing and accessory muscle use, total clinical score, and arterial oxygen saturation) than the placebo group. None of the patients in the albuterol group experienced a decrease of arterial oxygen saturation of ≥2%. It is conduded that a trial of nebulized β2 agonists is warranted in the treatment of acute asthma in infants and young children.


1994 ◽  
Vol 3 (5) ◽  
pp. 353-355 ◽  
Author(s):  
ML Noll ◽  
JF Byers

Correlations of mixed venous and arterial oxygen saturation, heart rate, respiratory rate, and mean arterial pressure with arterial blood gas variables were computed for 57 sets of data obtained from 30 postoperative coronary artery bypass graft patients who were being weaned from mechanical ventilation. Arterial oxygen saturation and respiratory rate correlated significantly, although moderately, with blood gases.


2016 ◽  
Vol 29 (5) ◽  
pp. 343
Author(s):  
Miguel Pinto da Costa ◽  
Henrique Pimenta Coelho

<p>The authors present a case of a 60-year-old male patient, previously diagnosed with B-cell chronic lymphocytic leukemia, who was admitted to the Emergency Room with dyspnea. The initial evaluation revealed severe anemia (Hgb = 5.0 g/dL) with hyperleukocytosis (800.000/µL), nearly all of the cells being mature lymphocytes, a normal chest X-ray and a low arterial oxygen saturation (89%; pulse oximetry). After red blood cell transfusion, Hgb values rose (9.0 g/dL) and there was a complete reversion of the dyspnea. Yet, subsequent arterial blood gas analysis, without the administration of supplemental oxygen, systematically revealed very low oxygen saturation values (~ 46%), which was inconsistent with the patient’s clinical state and his pulse oximetry values (~ 87%), and these values were not corrected by the administration of oxygen via non-rebreather mask. The investigation performed allowed to establish the diagnosis of oxygen leukocyte larceny, a phenomenon which conceals the true oxygen saturation due to peripheral consumption by leukocytes.</p>


2020 ◽  
Vol 6 (2) ◽  
pp. 00275-2019
Author(s):  
Jennifer L. Lenahan ◽  
Evangelyn Nkwopara ◽  
Melda Phiri ◽  
Tisungane Mvalo ◽  
Mari T. Couasnon ◽  
...  

BackgroundAs part of a randomised controlled trial of treatment with placebo versus 3 days of amoxicillin for nonsevere fast-breathing pneumonia among Malawian children aged 2–59 months, a subset of children was hospitalised for observation. We sought to characterise the progression of fast-breathing pneumonia among children undergoing repeat assessments to better understand which children do and do not deteriorate.MethodsVital signs and physical examination findings, including respiratory rate, arterial oxygen saturation measured by pulse oximetry (SpO2), chest indrawing and temperature were assessed every 3 h for the duration of hospitalisation. Children were assessed for treatment failure during study visits on days 1, 2, 3 and 4.ResultsHospital monitoring data from 436 children were included. While no children had SpO2 90–93% at baseline, 7.4% (16 of 215) of children receiving amoxicillin and 9.5% (21 of 221) receiving placebo developed SpO2 90–93% during monitoring. Similarly, no children had chest indrawing at enrolment, but 6.6% (14 of 215) in the amoxicillin group and 7.2% (16 of 221) in the placebo group went on to develop chest indrawing during hospitalisation.ConclusionRepeat monitoring of children with fast-breathing pneumonia identified vital and physical examination signs not present at baseline, including SpO2 90–93% and chest indrawing. This information may support providers and policymakers in developing guidance for care of children with nonsevere pneumonia.


2019 ◽  
Vol 40 (Supplement_1) ◽  
Author(s):  
R H Boeger ◽  
P Siques ◽  
J Brito ◽  
E Schwedhelm ◽  
E Pena ◽  
...  

Abstract Prolonged exposure to altitude-associated chronic hypoxia (CH) may cause high altitude pulmonary hypertension (HAPH). Chronic intermittent hypobaric hypoxia (CIH) occurs in individuals who commute between sea level and high altitude. CIH is associated with repetitive acute hypoxic acclimatization and conveys the long-term risk of HAPH. As nitric oxide (NO) is an important regulator of systemic and pulmonary vascular tone and asymmetric dimethylarginine (ADMA) is an endogenous inhibitor of NO synthesis that increases in hypoxia, we aimed to investigate whether ADMA predicts the incidence of HAPH among Chilean frontiers personnel exposed to six months of CIH. We performed a prospective study of 123 healthy male subjects who were subjected to CIH (5 days at appr. 3,550 m, followed by 2 days at sea level) for six months. ADMA, SDMA, L-arginine, arterial oxygen saturation, systemic arterial blood pressure, and haematocrit were measured at baseline and at months 1, 4, and 6 at high altitude. Acclimatization to high altitude was determined using the Lake Louise Score and the presence of acute mountain sickness (AMS). Echocardiography was performed after six months of CIH in a subgroup of 43 individuals with either good (n=23) or poor (n=20) aclimatization to altitude, respectively. Logistic regression was used to assess the association of biomarkers with HAPH. 100 study participants aged 18.3±1.3 years with complete data sets were included in the final analysis. Arterial oxygen saturation decreased upon the first ascent to altitude and plateaued at about 90% during the further course of the study. Haematocrit increased to about 47% after one month and remained stable thereafter. ADMA continuously increased and SDMA decreased during the study course, whilst L-arginine levels showed no distinct pattern. The incidence of AMS and the Lake Louise Score were high after the first ascent (53 and 3.1±2.4, respectively) and at one month of CIH (47 and 3.0±2.6, respectively), but decreased to 20 and 1.4±2.0 at month 6, respectively (both p<0.001 for trend). In echocardiography, 18 participants (42%) showed a mean pulmonary arterial pressure (mPAP) greater than 25 mm Hg (mean ± SD, 30.4±3.9 mm Hg), out of which 9 (21%) were classified as HAPH (mPAP ≥30 mm Hg; mean ± SD, 33.9±2.2 mm Hg). Baseline ADMA, but not SDMA, was significantly associated with mPAP at month 6 in univariate logistic regression analysis (R = 0.413; p=0.007). In ROC analysis, a cut-off for baseline ADMA of 0.665 μmol/l was determined as the optimal cut-off level to predict HAPH (mPAP >30 mm Hg) with a sensitivity of 100% and a specificity of 63.6%. ADMA concentration increases during long-term CIH. It is an independent predictive biomarker for the incidence of HAPH. SDMA concentration decreases during CIH and shows no association with HAPH. Our data support a role of impaired NO-mediated pulmonary vasodilation in the pathogenesis of high altitude pulmonary hypertension. Acknowledgement/Funding CONICYT/FONDEF/FONIS Sa 09I20007; FIC Tarapaca BIP 30477541-0; BMBF grant 01DN17046 (DECIPHER); Georg & Jürgen Rickertsen Foundation, Hamburg


Sign in / Sign up

Export Citation Format

Share Document